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Hadoop Distributed File System 



Hadoop Distributed File System 

•  Typical use: write once, read many 
–  Computation runs on Data Nodes 

•  Distributed 

•  Data redundancy 

•  Cluster of commodity nodes 

•  Designed to withstand failure 
–  But Name Node is a single point of 

failure (see secondary name node) 

•  Optimised for the tasks in hand 
–  Not a POSIX file system 

•  Placement strategies can be aware 
of data centre configuration 



Hadoop Framework 



Reading and writing the data 

•  InputFormat interface 
–  TextInputFormat   (key: byte offset of line, value: line text) 
–  KeyValueTextInputFormat  (each line has key/separator/value) 
–  SequenceFileInputFormat (Hadoop’s compressed binary format) 
–  NLineInputFormat (like TextInputFormat but multi-line) 

•  OutputFormat interface 
–  TextOutputFormat (one record per line, key/separator/value) 
–  SequenceFileOutputFormat (compressed binary) 
–  Filename is “part-xxxx” where xxxx is the partition ID 



Optimising with a combiner 

Map Input Map Output 
<0 : “A boy drove a car”> [<a,1>, <boy,1>, <drove,1>, <a,1>, <car,1>] 
<1 : “A car drove at a bus”> [<a,1>, <car,1>, <drove,1>, <at,1>, <a,1>, <bus,1>] 
<2 : “Can a boy drive a car?”> [<can,1>, <a,1>, <boy,1>, <drive,1>, <a,1>, <car,1>] 
<3 : “A danger – a banana!”> [<a,1>, <danger,1>, <a,1>, <banana,1>] 

Combiner Input Combiner output 
<a,[1,1]> <a, [2]> 

<boy, [1,1]> <boy, [2]> 

<car,[1,1,1]> <car, [3]> 

<drove,[1,1]> <drove, [2]> 



Combiner properties  

•  Optimisation only 
–  Framework may execute zero, one or more times 
–  Must not alter the final result 
–  A helper to the reducer 

•  Keys must not be altered 
–  Hadoop does not re-sort after the Combine stage 

Input Output 
Map <Key1 : Value1> List( <Key2 : Value2> ) 
Combine <Key2 : List(Value2) > <Key2 : List(Value2) > 
Reduce <Key2 : List(Value2) > List( <Key3 : Value3> ) 



Partitioner 

•  Hash Partitioner 
–  Default 

•  Total Order Partitioner 
–  Maintains order 
–  Configure to partition evenly 

•  Bespoke 
–  For highly skewed data hash partitioner may not partition work evenly 
–  Maybe some keys require more processing by Reducer 



Chaining Map Reduce Jobs 

•  A single map reduce job has 
–  One REDUCE stage 
–  One or more MAP stages before the reduce 
–  Zero or more MAP stages after the reduce 

•  Need to chain multiple map reduce jobs when: 
–  There is more than one REDUCE stage (grouping of data by key) 
–  MAP stages between REDUCE jobs could be part of either job 



Chain, but don’t iterate 

•  Each Hadoop job reads data from the HDFS and writes 
output to the HDFS 
–  No data is maintained in memory between jobs 

•  Fine for short chains of processing 

•  Very inefficient for iterative algorithms 
–  Data (even static data) must be read from disk at each iteration 

 

•  Spark – supports caching data  

•  Twister – iterative map reduce 

  



Programming Hadoop 

•  Hadoop framework is written in Java 

•  Two models for writing Map, Reduce and Combine functions 
–  Java classes 
–  Hadoop streaming 

–  Functions are scripts that read from standard input and write to 
standard output 

•  If writing your own partitioners or getting into the internals of 
Hadoop you will need to use Java 
–  But for most problems you do not need to do this. 



Map class in Java 

public static class MapClass  
  extends Mapper<Text, Text, Text, Text>  
{ 
    public void map(Text key, Text value, Context context)  
    { 
       context.write(value, key);  
    } 
} 

Mapper< 
  InputKeyType, InputValueType,  
  OutputKeyType, OutputValueType > 

write output data using context.write(outputKey, 
outputValue) 
 
Can call multiple times and hence output 
List(<OutputKeyType, OutputValueType>) 

Must implement function: 
void map(InputKeyType, InputValueType, Context)  

This mapper simply swaps 
the key and value 



Reduce class in Java 

public static class Reduce  
   extends Reducer<Text, Text, Text, Text>  
{ 
  public void reduce( Text key,  
                      Iterable<Text> values,  
                      Context context)  
  { 
    String csv = “”; 
    for (Text val:values)  
    { 
      if (csv.length() > 0) csv += “,”; 
      csv += val.toString(); 
    } 
    context.write(key, new Text(csv)); 
  } 
} 
 

Reducer< 
  InputKeyType, InputValueType,  
  OutputKeyType, OutputValueType > 

Uses iterator to get list 
of values – can thus 
support large lists with 
low memory footprint. 
So long as the rest of 
the method is similarly 
low memory. This 
example is not! 

write output data using 
context.write(outputKey, outputValue) 
Can call multiple times if desired 



Streaming Mapper 

•  Input: rows of key/value pairs separated by TAB character 

•  Output: rows of key/value pairs separated by TAB character 

•  Stateless 
–  Process one line at a time with no state maintained between lines. 

1<TAB>A long time ago 

2<TAB>in a galaxy far 

3<TAB>far away 

a<TAB>1 

long<TAB>1 

time<TAB>1 

ago<TAB>1 

in<TAB>1 

a<TAB>1 

galaxy<TAB>1 

... 



Streaming Reducer 

•  Input is rows of key/value pairs separated by TAB character 

•  Input guarantees that all the key/value pairs associated with 
a specific key will be contiguous in the input stream 
–  When key changes you know you have seen all the values associated 

with that key 

•  Output rows of key/value pairs separated by TAB character 

•  Stateless 
–  Can maintain state while processing rows with the same key. 
–  Must not maintain state across rows with different keys 



Streaming Reducer 

a<TAB>3 

far<TAB>2 

time<TAB>1 

a<TAB>1 

a<TAB>1 

a<TAB>1 

far<TAB>1 

far<TAB>1 

time<TAB>1 



Hadoop vs MPI/HPC 

•  Fault tolerance 
–  Hadoop is designed specifically with fault tolerance in mind 
–  MPI provides little support for fault tolerance and most MPI programs 

assume the system hardware will not fail 

•  Specific vs general 
–  Hadoop is a framework for a specific data processing pattern 
–  MPI allows you to code any algorithm you wish 

•  Iterative algorithms 
–  Hadoop very poor at multiple iterations over the data 
–  Very easy to write such programs in MPI 

•  Speed 
–  If you have a reliable HPC system an optimised MPI implementation 

should perform considerably better a Hadoop solution 

•  Hadoop good when data written once – processed often 

•  Hadoop used key value pair structures that can be 
fragemented in memory leading to poor cache efficiency 

•  Trade off between simple, highly scalable on commodity 
hardware against highly optimised implementation on very 
expensive hardware 



Hadoop vs MPI/HPC cont. 

•  Cost 
–  Hadoop simple to write and can run reliably on commodity hardware. 
–  MPI typically run on expensive HPC systems 

– MPI can run on clouds but have to build your own fault tolerance. 

•  Dynamic nature of data 
–  Hadoop is good for processing massive amounts of data that is 

written once and processed often 
–  HPC systems may not scale well to such massive datasets being 

uploaded. 



Hadoop Ecosystem 

•  HBASE 
–  Distributed, scalable big data store 
–  Columnar database 

•  PIG 
–  Higher level data flow language for 

programming Hadoop 

•  Mahout 
–  Scalable machine learning and data 

mining over Hadoop 

•  Spark 
–  Machine learning algorithms 



A little more on Spark 

•  Explicitly supports caching data 
–  Speeds up iterative algorithms  

•  Can use HDFS as the data source 

•  More that just map/reduce 
–  Transformations: 

– map, filter, union, Cartesian, join, sample… 
–  Actions: 

–  reduce, collect, count, first, countBy, 
foreach… 



Additional reading 

•  Google File System 
–  http://static.googleusercontent.com/media/research.google.com/en//

archive/gfs-sosp2003.pdf 

•  Map Reduce 
–  http://static.googleusercontent.com/media/research.google.com/en//

archive/mapreduce-osdi04.pdf 

•  Examples taken from Hadoop in Action 
–  http://www.manning.com/lam/ 

•  For Hadoop 3, O’Reilly’s Hadoop, The 
Definitive Guide is good. 

•  Plenty online 


