
Data Analytics with HPC

Practical – Data Cleaning with Python

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Overview

•  Practical Aim:
–  To practice some common techniques for cleaning and

preparing data directly in Python

•  Practical based on Section 2 of “An introduction to
data cleaning with R” from Statistics Netherlands
–  Available on CRAN at
http://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-
Introduction_to_data_cleaning_with_R.pdf

Practical Contents

•  Part 1 – using pandas read_csv() to read csv data into a data
frame, this illustrates
–  Header row
–  Setting column names
–  Using column classes
–  Coercion

•  Part 2 – dealing with unstructured text data. Artificial example
that illustrates various techniques
–  Pattern matching and regular expressions
–  Python lists and functions
–  More coercion

PART 1
Reading data into a data frame

Logging in and getting started
•  Open a terminal window and run the following commands:
Login

> ssh username@login.rdf.ac.uk

Load python modules

> module load python

> module load anaconda

Create working directory

> mkdir dataCleaning

> cd dataCleaning

Create and start editing unnamed.txt

> nano unnamed.txt

Exit nano, then start ipython

> ipython

Setting up our data files

•  Create a text file called
unnamed.txt.
> nano unnamed.txt

•  Put the following into this file:

•  Create another text file called
daltons.txt

 > nano daltons.txt

•  Put the following into this file:

%% Data on the Dalton Brothers
Gratt,1861,1892
Bob,1892
1871,Emmet,1937
% Names, birth and death dates

read_csv using pandas

•  Pandas is the Python Data Analysis Library

•  Import the pandas module as pd

•  Read this with pd.read_csv()
–  What has happened to the first row?

–  now a header

•  Read this again with

 header=None as an argument
–  What has happened now?

Setting the column names
•  Let’s read the data into a Python object this time and also

set the column names.

•  Let’s convert the height column into numeric values
–  What happened to 5.7*?

Structure of the Data Frame

•  Let’s check the structure
–  It’s a data frame containing:

–  an age column of ints
–  a height columns of floats.

PART 2
Dealing with unstructured text data

Dealing with unstructured data
Step 1 – Read the file

Step 2 – Select only lines containing data

Step 3 – Split each line into its separate fields

Step 4 – Standardise the rows

Step 5 – Transform to a data frame

Step 6 – Normalise or coerce to the correct type

%% Data on the Dalton Brothers
Gratt,1861,1892
Bob,1892
1871,Emmet,1937
% Names, birth and death dates

Step 1 - readlines()

•  readLines reads a file and returns a character vector,
where each element is one line from the file

•  Use readlines() to
read this into
Python

Step 2 – Selecting lines only with data

•  In our example a % at the beginning of the line indicates a
comment. Let’s remove those lines.

•  To do this we first need to learn about patterns and regular
expressions

•  Using a sample data set – iris

Using List Comprehension
•  Python's list comprehension applies a function to each

element in a list.

•  A simple pattern match in Python

•  Use list comprehension to match the pattern in every item in
the list

•  Put the matches into a new list

Regular Expressions in Python
•  As before, using regular expressions

•  ^ matches pattern at start

•  $ matches pattern at end

•  [] character class, match characters enclosed in []

•  For more see help(re) for full explanation

Subsetting and Logicals
•  Logical and &

•  Logical or |

•  Logical not ~

•  Note difference in behaviour between == and =

Selecting rows and columns

•  Pandas filter() command selects columns

•  Can filter by regular expression

•  Select columns and rows at the same time

Step 2 (cont) Selecting lines only with data

•  Find lines starting with a % sign

•  Remove those lines starting with a % sign

Step 3 – split lines into fields

•  For each line, we now want to extract the content for each
field

•  We now need to know about splitting lines and learn about
lists in Python

Python Lists
•  In a Python a list can contain objects of different types,

including others lists

•  [] retrieves and object from the list. Indexing starts at zero.

•  Can select a range of values

•  Use – to count from end

•  From second last to end

split

•  split() – splits a string into a list of substrings at the point
indicated by the split pattern

Step 3 (cont) split lines into fields

•  Use split() to split each line into data chunks

•  Use strip() to remove whitespace characters such as \n

•  Do this for each line in dat

Step 4 – Standardise Rows

•  Now we want to make sure each row has the same number
of fields and in the same order

•  Let's write a function to process each row.

User-defined functions in Python

def my_function (arg1, arg2, ...):
 statements
 return(object)

code not in my_function

•  Objects in the function are local to the function

•  The object returned can be any data type

•  Functions are stored as objects

•  An explicit return statement is required

•  : marks the start of the body of the function. The body must
be indented, the end of the indentation marks the end of the
function.

assign_fields function

•  So let’s write a function that takes the list representing each
line, extracts the person’s name, their birth and death dates
and re-orders them accordingly.

•  Let’s call this function assign_fields and store it in a file called
assign_fields.py

•  Exit ipython by typing: exit()

•  Open a text file with: nano assign_fields.py

assign_fields function

Step 4 (cont)

•  Save the assign_fields.py file and restart ipython

•  Read the file in again after re-starting ipython

•  Let’s run the assign fields function on the elements of field_list

Step 5 – Transform to a data frame
•  Let’s convert the list of standardised rows into a data frame.

Step 6 – Normalise & coerce to correct type

•  Now need to coerce our columns to the correct types eg.
numerics, characters, categories, …. In this case birth and
death, need to be numerics

Step 6 – Normalise & coerce to correct type

•  The birth column contains floats instead of integers because
you can't mix int and NaN data types in pandas.

Repeatability
•  Storing the instructions in a file along with comments

enables repeatability
•  Ipython notebooks allow nicely formatted comments,

code, and output to be mixed.

Fixing character vectors – re.sub

•  sub() - replaces a pattern

•  Can choose how many occurrences to replace

Fixing character vectors – re.sub

•  Apply a substitution across every string in a list

Parallel processing in Python

•  Can use the ‘multiprocessing’ module to run code across
more than one processor

•  Serial version:

•  Parallel version:

