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Overview  

•  Practical Aim:  
–  To practice some common techniques for cleaning and 

preparing data directly in Python 

•  Practical based on Section 2  of “An introduction to 
data cleaning with R” from Statistics Netherlands 
–  Available on CRAN at  
http://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-
Introduction_to_data_cleaning_with_R.pdf 
 



Practical  Contents 

•  Part 1 – using pandas read_csv() to read csv data into a data 
frame, this illustrates 
–  Header row 
–  Setting column names 
–  Using column classes 
–  Coercion 

•  Part 2 – dealing with unstructured text data. Artificial example 
that illustrates various techniques 
–  Pattern matching and regular expressions 
–  Python lists and functions 
–  More coercion 



PART 1 
Reading data into a data frame 



Logging in and getting started 
•  Open a terminal window and run the following commands: 
# Login 

> ssh username@login.rdf.ac.uk

# Load python modules 

> module load python

> module load anaconda

# Create working directory 

> mkdir dataCleaning

> cd dataCleaning

# Create and start editing unnamed.txt 

> nano unnamed.txt

# Exit nano, then start ipython 

> ipython



Setting up our data files 

•  Create a text file called 
unnamed.txt.  
> nano unnamed.txt  

•  Put the following into this file: 

•  Create another text file called 
daltons.txt 

 > nano daltons.txt 

•  Put the following into this file: 

%% Data on the Dalton Brothers 
Gratt,1861,1892 
Bob,1892 
1871,Emmet,1937 
% Names, birth and death dates 



read_csv using pandas 

•  Pandas is the Python Data Analysis Library 

•  Import the pandas module as pd 

•  Read this with pd.read_csv() 
–  What has happened to the first row?  

–   now a header 

•  Read this again with  

    header=None as an argument 
–  What has happened now?  



Setting the column names 
•  Let’s read the data into a Python object this time and also 

set the column names. 

•  Let’s convert the height column into numeric values 
–  What happened to 5.7*? 



Structure of the Data Frame 

•  Let’s check the structure 
–  It’s a data frame containing: 

–  an age column of ints 
–  a height columns of floats. 



PART 2 
Dealing with unstructured text data 



Dealing with unstructured data 
Step 1 – Read the file 

Step 2 – Select only lines containing data  

Step 3 – Split each line into its separate fields 

Step 4 – Standardise the rows 

Step 5 – Transform to a data frame 

Step 6 – Normalise or coerce to the correct type 

 
%% Data on the Dalton Brothers 
Gratt,1861,1892 
Bob,1892 
1871,Emmet,1937 
% Names, birth and death dates 



Step 1 - readlines() 

•  readLines reads a file and returns a character vector, 
where each element is one line from the file 

•  Use readlines() to 
read this into 
Python 



Step 2 – Selecting lines only with data  

•  In our example a % at the beginning of the line indicates a 
comment. Let’s remove those lines. 

•  To do this we first need to learn about patterns and regular 
expressions 

 

•  Using a sample data set – iris 

 
 
 
 



Using List Comprehension 
•  Python's list comprehension applies a function to each 

element in a list. 

•  A simple pattern match in Python 

•  Use list comprehension to match the pattern in every item in 
the list 

•  Put the matches into a new list 

 
 



Regular Expressions in Python 
•  As before, using regular expressions 

•  ^ matches pattern at start  

  

•  $ matches pattern at end 

 

•  [] character class, match characters enclosed in [ ] 

 

•  For more see help(re) for full explanation 

 



Subsetting and Logicals 
•  Logical and  & 

•  Logical or | 

•  Logical not ~ 

•  Note difference in behaviour between == and = 



Selecting rows and columns 

•  Pandas filter() command selects columns 

•  Can filter by regular expression 

•  Select columns and rows at the same time 



Step 2 (cont) Selecting lines only with data  

•  Find lines starting with a % sign  

•  Remove those lines starting with a % sign  



Step 3 – split lines into fields 

•  For each line, we now want to extract the content for each 
field 

•  We now need to know about splitting lines and learn about 
lists in Python 



Python Lists 
•  In a Python a list can contain objects of different types, 

including others lists 

•  [] retrieves and object from the list. Indexing starts at zero. 

 

•  Can select a range of values 

•  Use – to count from end  

•  From second last to end 



split 

•  split() – splits a string into a list of substrings at the point 
indicated by the split pattern 

 

   



Step 3 (cont) split lines into fields 

•  Use split() to split each line into data chunks 

•  Use strip() to remove whitespace characters such as \n 

•  Do this for each line in dat 



Step 4 – Standardise Rows 

•  Now we want to make sure each row has the same number 
of fields and in the same order 

•  Let's write a function to process each row. 



User-defined functions in Python 

def my_function (arg1, arg2, ... ): 
 statements 
 return(object) 

code not in my_function 

•  Objects in the function are local to the function  

•  The object returned can be any data type 

•  Functions are stored as objects 

•  An explicit return statement is required 

•  : marks the start of the body of the function. The body must 
be indented, the end of the indentation marks the end of the 
function. 



assign_fields function 

•  So let’s write a function that takes the list representing each 
line, extracts the person’s name, their birth and death dates 
and re-orders them accordingly. 

•  Let’s call this function assign_fields and store it in a file called 
assign_fields.py 

•  Exit ipython by typing: exit()

•  Open a text file with: nano assign_fields.py



assign_fields function 



Step 4 (cont) 

•  Save the assign_fields.py file and restart ipython 

•  Read the file in again after re-starting ipython 

 

 

•  Let’s run the assign fields function on the elements of field_list 

 



Step 5 – Transform to a data frame 
•  Let’s convert the list of standardised rows into a data frame. 

 



Step 6 – Normalise & coerce to correct type 

•  Now need to coerce our columns to the correct types eg. 
numerics, characters, categories, ….  In this case birth and 
death, need to be numerics 



Step 6 – Normalise & coerce to correct type 

•  The birth column contains floats instead of integers because 
you can't mix int and NaN data types in pandas. 



Repeatability 
•  Storing the instructions in a file along with comments 

enables repeatability 
•  Ipython notebooks allow nicely formatted comments, 

code, and output to be mixed. 



Fixing character vectors – re.sub 

•  sub()  - replaces a pattern 

 

•  Can choose how many occurrences to replace 



Fixing character vectors – re.sub 

•  Apply a substitution across every string in a list 

 

 



Parallel processing in Python 

•  Can use the ‘multiprocessing’ module to run code across 
more than one processor 

•  Serial version: 

•  Parallel version: 


