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Revision and question 
•  Test available for condition X 

•  Sensitivity is 90%  
•  For 90% of people with condition X the test 

will be positive 

•  Specificity is 95% 
•  For 95% of people without condition X the 

test will be negative 

Q. If I take the test and the result is positive what is the probability that I 
have condition X? 



Answer 
•  It depends on the rate at which condition X occurs in the population 

•  Thus 90+495 = 585 people test positive, of these 90 have condition X. 
This is 15.4% 



Bayes’ Law 
•  Definitions: 

•             : probability of event x 
•             : probability of event x and event y (independent or otherwise) 
•             : probability of event x given event y 

 

•  Bayes’ Law: 

•  Bayes’ Law shows importance of overall event probability 
•  Allows to measure            and calculate   



Bayes’ Law applied to example 
•  Bayes’ Law 

•  Applied to example: 

Test sensitivity

1 - Test specificity

Probability of X in 
whole population

1 – Probability of X in
whole population



SPAM classification 
•  Wish to classify emails as SPAM or not SPAM 

•  Data for each email: 
–  Sender 
–  Subject 
–  Message contents 
–  Lots of other metadata :Sender’s IP, time, … 

•  Simple method: 
–  Classify on presence or absence of keywords 

–  Viagra, HPC, purchase, cash etc. 

•  Is K-NN suitable? 
–  No.  

–  With 1000s of words there are too many dimensions 
–  Dimensions not weighted to relevance 
 

Image courtesy of Nemo
under CC0 license.



Probabilistic Classification Model 
•  We wish to build (train) a statistical model that we can use to classify instances of 

observed data 

•      is set of classes 
•   e.g.                                                   
•   e.g.   

•  Observed data vector     for      features 

•  Want a model that allows us to calculate                     for all  

•  Then simply choose the class that gives the highest value 

VirginicaVersicolorSetosa



Applying Bayes’ Th. and being naive 
•  How do we measure               ? 
 

•  Bayes’ Theorem! 

•          is same of all      so we can ignore that: 

•  Now we can be naïve and assume independence between all features: 



Naïve Bayes Classifier and SPAM 
•  Recall: 

   

•  Assume the features are the top 10,000 words 
  

 

 
 
  

p(wj |ci) =
number of emails of class ci that contain word wj

number of emails of class ci

p(ci) =
number of emails of class ci

number of emails



SPAM example 
•  Training set 500 spam, 800 non-spam 
•  “viagra” occurs in 234/500 spam, 10/800 non-spam 
•  “epcc” occurs in 100/500 spam, 300/800 non-spam 
•  “Bayes” occurs in 2/500 spam, 56/800 non-spam 

/ p(Spam)p(viagra|Spam)(1� p(epcc|Spam))(1� p(Bayes|Spam))

p(Spam|{viagra = 1, epcc = 0,Bayes = 0})

p(NonSpam|{viagra = 1, epcc = 0,Bayes = 0})

/ p(NonSpam)p(viagra|NonSpam)(1� p(epcc|NonSpam))(1� p(Bayes|NonSpam))

=
500

500 + 800
· 234
500

· (1� 100

500
) · (1� 2

500
) = 0.143

=
800

500 + 800
· 10

800
· (1� 300

800
) · (1� 56

800
) = 0.0045

The email is 
classified as spam 



Gaussian Naïve Bayes 
If we have continuous values rather than discrete then simply model 
with appropriate distribution 
 

•  Gaussian (normal) distribution 
–  Mean (   ) and variance (      ) 
–       is called standard deviation 
–  95% of data lines within 1.96 x standard 

deviations of the mean 

•  For each feature calculate mean and variance for each class then: 

•  Mean and variance can be calculated in a single pass through the data. 
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Naïve Bayes implementation details 
•  Discrete values: 

•  Learning is just a matter of counting so can be done in a single pass and easy to do in 
parallel 

•  Continuous values: 
•  Single pass algorithm to compute mean and variance 
•  Parallel algorithms to compute mean and variance over distributed datasets 

•  Map/Reduce 
•  Discrete: classic counting problem 

•  Map: Key=<class>:<featureName>:<featureValue> Value=1 
•  Reduce: standard count reducer and combiner 

•  Continuous: 
•  Map: Key=<class>:<featureName> Value=<featureValue> 
•  Reduce: single pass compute of mean and variance 



Applying the model 
• Classification stage quick 
• Can use logs to convert multiplications into additions 

•  Very useful if classifying a large number of items, e.g. voxels in a 3D 
scan 

 p(NonSpam|{viagra = 1, epcc = 0,Bayes = 0})
/ p(NonSpam)p(viagra|NonSpam)(1� p(epcc|NonSpam))(1� p(Bayes|NonSpam))

=
800

500 + 800
· 10

800
· (1� 300

800
) · (1� 56

800
) = 0.0045



Naïve Bayes classification: summary 
•  Supervised classification 
•  Model 

•  Fairly small, a few numbers for each feature and class combination 
•  Learning 

•  Basic counting to build up model 
•  Can often be done in a single pass, so scales well 
•  Easily parallelisable 

•  Naïve assumption does not cause too much harm in practice 
•  Good first approach to get a base-line performance 
•  Easy to adjust weighing to get desired balance between sensitivity and specificity 


