

High-Performance Computing (HPC) What is it and why do we care?

Horizon 2020 **European Union Funding** for Research & Innovation

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-ncsa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Q: What is high-performance computing?

- Q: What is high-performance computing?
- A: Using a high-performance computer (a supercomputer)...

Q: What is a high-performance computer?

Q: What is a high-performance computer?

- Q: What is a high-performance computer?
- A: a machine that combines a large number* of processors and makes their combined computing power available to use

Based fundamentally on *parallel computing*: using many processors (cores**) at the same time to solve a problem

* this number keeps on increasing over time

** define cores vs processors clearly in lecture on hardware building blocks

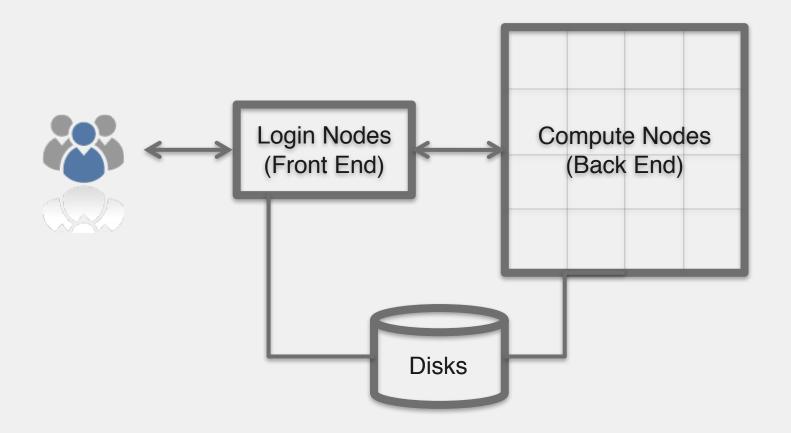
Generic Parallel Machine (computer cluster)

- Rough conceptual model is a collection of laptops
- Connected together by a network so they can all communicate

- Each laptop is a *compute node*
 - has a processor, hard disk,

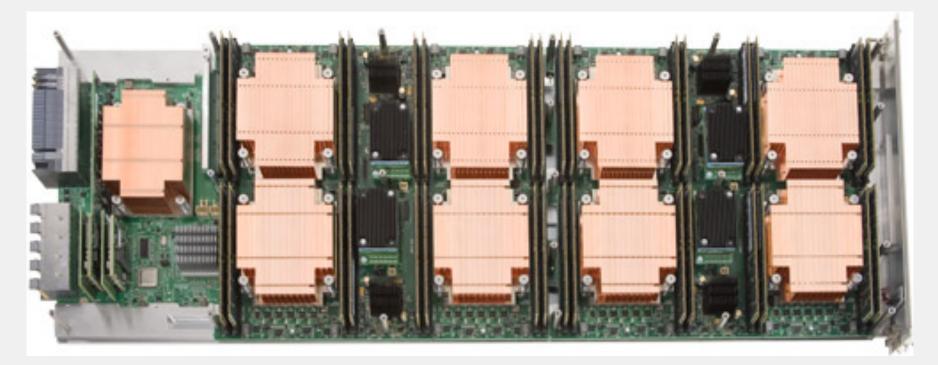
memory, ...

- Each runs a copy of an operating system (Linux)
- If each processor has 4 cores, total system has 20 cores



HPC architectures

- Majority of HPC machines follow this generic conceptual layout for a computer cluster:
 - many compute nodes connected together by a network
 - each compute node has separate, independent memory
- Some smaller HPC machines allow many processors to all access the same shared memory
 - allows some software to run in parallel with fewer modifications
 - convenient for many data-intensive applications
 - including bioinformatics/genomics
 - difficult / expensive to scale this approach to very many processors



Typical HPC system layout

HPC hardware (ARCHER - Cray XC30)

- One blade has four compute nodes
- Each node has two processors and 64GB of memory
- Each processor has 12 cores

HPC hardware (ARCHER - Cray XC30)

A blade being slotted into a cabinet.

Each cabinet can hold up to 48 blades

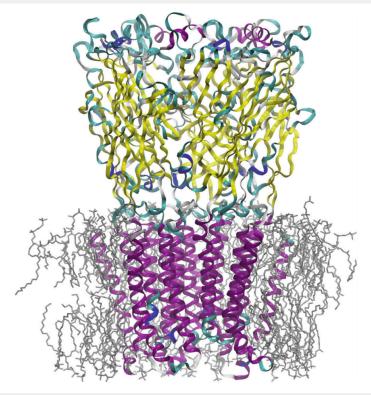
ARCHER has 26 cabinets

The scale of HPC

- ARCHER has:
 - ~5000 nodes
 - ~118 000 cores
- like 30 000 quadcore laptops connected together (!)
- Largest systems globally currently (2017) have hundreds of thousands up to millions of cores
- HPC systems offer a large amount of computing power
- Dominant platforms for computational science

Who uses HPC?

• Traditionally used for:


- materials science / solid state physics
- computational chemistry
- biomolecular simulation
- particle physics
- environmental modelling
 - weather & climate
 - geosciences
 - oceanography
- many engineering applications

e.g. on ARCHER see http://archer.ac.uk/status/codes/

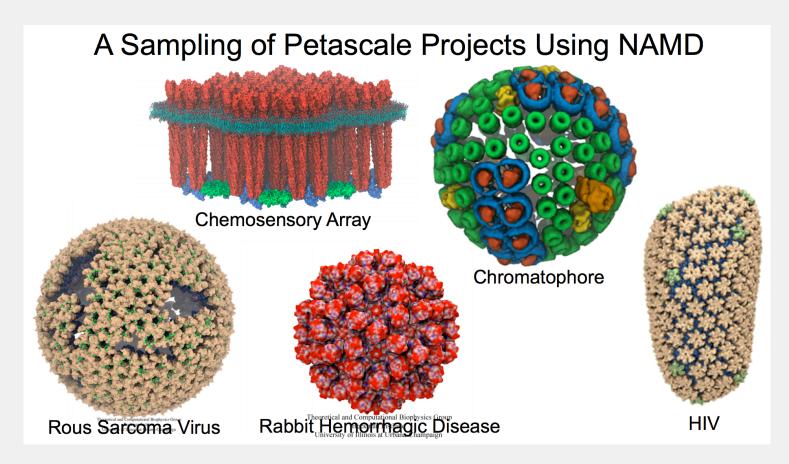
Examples

biomolecular simulation:

Ligand-gated ion-channel membrane protein GLIC (colored), embedded in a lipid membrane (grey), solvated in water (not shown)

145,000 atoms

Taken from:


https://doi.org/10.1007/978-3-319-15976-8_1

(Lindahl E. *et al.*) (2015) Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In: Markidis S., Laure E. (eds) Solving Software Challenges for Exascale. EASC 2014. Lecture Notes in Computer Science, vol 8759

Examples

biomolecular simulation:

HPC networking

- HPC relies on fast communications between nodes to allow applications to use many processors in parallel
- Networking hardware and software protocols need to be good enough to avoid becoming a bottleneck, and robust under heavy load
- Ethernet is cheap, used in small / lower performance systems
- High-end HPC systems use specialised network designs (e.g. Infiniband)
 - optimised communication protocols and connection topologies
 - special copper & fibre wiring
 - expensive!

HPC vs other types of computing

- HPC is one extreme in a continuum of computing:
 - Individual desktop/laptop
 - University research group / departmental machine (server or cluster)
 - University-wide, regional or national-level HPC machine
- Commercial datacentres (Amazon, Google, Facebook, etc.) have enormous computing clusters
 - These do not cater for scientific computing
- HPC machines optimised for traditional science applications:
 - strong floating-point performance ("number crunching")
 - fast networking
 - software stack that includes scientific / maths libraries

HPC vs other types of computing

- HPC offers *capability computing*:
 - ability to solve very large / complex scientific problems quickly
- Can also use HPC for *capacity computing:*
 - many small / simple problems
 - this may be cheaper on generic computing clusters or cloud computing!
 - usage of ARCHER is charged starting at a minimum of 1 node (24 cores)

HPC and me

- HPC platforms try to cater for a broad range of computational needs, and have co-evolved with their user communities
 - Optimised for certain problem categories
 - Established usage models and conventions
- Scientific software and its users have also had to adapt to make use of HPC
 - Molecular dynamics software heavily optimised to use HPC machines
- HPC continues to evolve
 - Data-centric computing increasingly important (bioinformatics a big driver)