
bioexcel.eu

Partners Funding

Parallel Programming
Libraries and implementations



bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their 
permission before reusing these images.



bioexcel.eu

Outline

• MPI – distributed memory de-facto standard
• OpenMP – shared memory de-facto standard
• CUDA – GPGPU de-facto standard
• Other approaches
• Summary



bioexcel.eu

MPI Library

Distributed, message-passing programming



bioexcel.eu

Message-passing concepts



bioexcel.eu

Explicit Parallelism

• In message-passing all the parallelism is explicit
• The program includes specific instructions for each communication
• What to send or receive
• When to send or receive
• Synchronisation

• It is up to the developer to design the parallel decomposition 
and implement it
• How will you divide up the problem?
• When will you need to communicate between processes?



bioexcel.eu

Message Passing Interface (MPI)

• MPI is a portable library used for writing parallel programs 
using the message passing model
• You can expect MPI to be available on any HPC platform you use

• Based on a number of processes running independently in 
parallel
• HPC resource provides a command to launch multiple processes 

simultaneously (e.g. mpiexec, aprun)
• There are a number of different implementations but all 

should support the MPI-3 standard
• As with different compilers, there will be variations between 

implementations but all the features specified in the standard should 
work

• Examples: MPICH, Open MPI



bioexcel.eu

Point-to-point communications

• A message sent by one process and received by another
• Both processes are actively involved in the communication –

not necessarily at the same time
• Wide variety of semantics provided:
• Blocking vs. non-blocking
• Ready vs. synchronous vs. buffered
• Tags, communicators, wild-cards
• Built-in and custom data-types

• Can be used to implement any communication pattern
• Collective operations, if applicable, can be more efficient



bioexcel.eu

Collective communications

• A communication that involves all processes
• “all” within a communicator, i.e. a defined sub-set of all processes

• Each collective operation implements a particular 
communication pattern
• Easier to program than lots of point-to-point messages
• Should be more efficient than lots of point-to-point messages

• Commonly used examples:
• Broadcast
• Gather
• Reduce
• AllToAll



bioexcel.eu

Example: MPI HelloWorld

int main(int argc, char* argv[])
{

int size,rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello world - I'm rank %d of %d\n", rank, size);

MPI_Finalize();
return 0;

}



bioexcel.eu

OpenMP

Shared-memory parallelism using directives



bioexcel.eu

Shared-memory concepts
• Threads “communicate” by having access to the same 

memory space
• Any thread can alter any bit of data
• No explicit communications between the parallel tasks



bioexcel.eu

OpenMP

• OpenMP is an Application Program Interface (API) for 
shared memory programming
• You can expect OpenMP to be supported by all compilers on all HPC 

platforms
• Not a library interface like MPI
• You interact through directives in your program source rather than 

calling functions/subroutines
• Parallelism is less explicit than MPI
• You specify which parts of the program you want to parallelise and the 

compiler produces a parallel executable
• Also used for programming Intel Xeon Phi



bioexcel.eu

Loop-based parallelism

• The most common form of OpenMP parallelism is to 
parallelise the work in a loop
• The OpenMP directives tell the compiler to divide the iterations of the 

loop between the threads

#pragma omp parallel shared(a,b,c,chunk) private(i)
{

#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++) {
c[i] = a[i] + b[i];

}
}



bioexcel.eu

Addition example
asum = 0.0
#pragma omp parallel \
shared(a,N) private(i) \
reduction(+:asum)
{

#pragma omp for
for (i=0; i < N; i++)
{
asum += a[i];

}
}
printf(“asum = %f\n”, asum);

loop: i = istart,istop
myasum += a[i]

end loop

asum

asum=0



bioexcel.eu

CUDA

Programming GPGPU Accelerators



bioexcel.eu

CUDA

• CUDA is an Application Program Interface (API) for 
programming NVIDIA GPU accelerators
• Proprietary software provided by NVIDIA. Should be available on all 

systems with NVIDIA GPU accelerators
• Write GPU specific functions called kernels
• Launch kernels using syntax within standard C programs
• Includes functions to shift data between CPU and GPU memory

• Similar to OpenMP programming in many ways in that the 
parallelism is implicit in the kernel design and launch
• More recent versions of CUDA include ways to communicate 

directly between multiple GPU accelerators (GPUdirect)



bioexcel.eu

Example:

// CUDA kernel. Each thread takes care of one element of c
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

// Get our global thread ID
int id = blockIdx.x*blockDim.x+threadIdx.x;

// Make sure we do not go out of bounds
if (id < n)

c[id] = a[id] + b[id];
}

// Called with
vecAdd<<<gridSize, blockSize>>(d_a, d_b, d_c, n);



bioexcel.eu

OpenCL

• An open, cross-platform standard for programming 
accelerators
• includes GPUs, e.g. from both NVIDIA and AMD
• also Xeon Phi, Digital Signal Processors, ...

• Comprises a language + library

• Harder to write than CUDA if you have NVIDIA GPUs
• but portable across multiple platforms
• although maintaining performance is difficult



bioexcel.eu

Other approaches

Niche and future implementations



bioexcel.eu

Other parallel implementations

• Shared memory
• POSIX Threads (Pthreads), Thread Building Blocks (TBB), Cilk

• Partitioned Global Address Space (PGAS)
• Coarray Fortran, Unified Parallel C (UPC), Chapel

• Single-sided Remote Direct Memory Access (RDMA)
• SHMEM, OpenSHMEM

• OpenACC
• Directive-based approach for programming accelerators



bioexcel.eu

Summary



bioexcel.eu

Parallel Implementations

• Distributed memory programmed using MPI
• Shared memory programmed using OpenMP
• GPU accelerators most often programmed using CUDA

• Hybrid programming approaches (e.g. MPI/OpenMP) are 
becoming more common
• They match the hardware layout more closely

• A number of other, more experimental approaches are 
available


