NATURAL
ENVIRONMENT E PS R‘
RESEARCH COUNCIL

ARCHER Single Node
Optimisation

Vectorisation

Slides contributed by Cray and EPCC

N
Vector Instructions (Vectorisation)

Modern CPUs can perform multiple operations each cycle
Use special SIMD (Single Instruction Multiple Data) instructions
e.g. SSE, AVvX

Operate on a "vector" of data
typically 2 or 4 double precision floats (on Ivy Bridge)

Potentially gives speedup in floating point operations

Usually only one loop is vectorisable in loop nest
And most compilers only consider inner loop

epce

Optimising compilers will use vector instructions
Relies on code being vectorisable
...or in a form that the compiler can convert to be vectorisable
Some compilers are better at this than others
But there are some general guidelines about what is likely to work...

epcc

-
Requirements for vectorisation

Loops must have determinable (at run time) trip count
rules out most while loops

Loops must not contain function/subroutine calls
unless the call can be inlined by the compiler
maths library functions usually OK

Loops must not contain braches or jumps
guarded assignments may be OK
e.g. if (a[i] '= 0.0) b[i] = ¢ * a[il;

Loop trip counts needs to be long, or else a multiple of the
vector length

epcc

3 5
‘zfv 71
o &
]
o)
i

Loops must no have dependencies between iterations
reductions usually OK, e.g. sum += a[i];
avoid induction variables e.g. indx += 3;
use restrict
may need to tell the compiler if it can’t work it out for itself

Aligned data is best

e.g. AVX vector loads/stores operate most effectively on 32-bytes
aligned address

need to either let the compiler align the data....
..or tell it what the alignment is

Unit stride through memory is best

epcc

' 5
.zf‘” ¢
2 o
N
o
e

N
Did my loop get vectorised?

Always check the compiler output to see what it did

CCE: -hlist=a
GNU: -fdump-tree-vect-all=<filename>
Intel: -opt-report3

or (for the hard core) check the assembler generated

Clues from CrayPAT's HWPC measurements
export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP

Complicated, but look for ratio of operations/instructions > 1
expect 4 for pure AVX with double precision floats

epcc

N
Example

16. + 1------- < do j = 1,N

17. 1 X = xinit

18. + 1 r4----< doi=1,N

19. 1rd X = X + vexpr(i,j)
20. 1r4 y(i) = y(i) + X
21. 1 r4----> end do

22. 1------- > end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.
ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

A loop starting at line 18 was unrolled 4 times.
ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

(©)archer SPCC

38. V2 S < doj =1,N

39. Vf x(j) = xinit

40. Vf------ > end do —_ [promoted to vector:

41. _ o trade slightly more memory
42. Ar4-----< do J = LN for better performance

43. ird if--< do i = 1,N

44. ird if x(3) = x(3) + vexpr(i,j)

45. ird if y(i) = y(i) + x(3)

46. ird if--> end do

47. ir4----- > end do 1.089ms

-

4

-37%

ftn-6007 ftn: SCALAR File = bufpack.F90, Line =42

A loop starting at line 42 was interchanged with the loop starting at line 43.
ftn-6004 ftn: SCALAR File = bufpack.F90, Line =43

A loop starting at line 43 was fused with the loop starting at line 38.
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

A loop starting at line 38 was vectorized.
ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

A loop starting at line 42 was vectorized as part of the loop starting at line 38.
ftn-6005 ftn: SCALAR File = bufpack.F90, Line =42

A loop starting at line 42 was unrolled 4 times.

N
OpenMP 4.0 SIMD directives

Many compilers support their own sets of directives to
assist the compiler to vectorise loops.
useful but not portable

OpenMP 4.0 contains a standardised set of directives

Currently supported by Intel and GNU compilers on

ARCHER
Cray coming soon.....

epcc

: i%
Y <7 | €
~
.
-
s

e
Portable SIMD directives

Use simd directive to indicate a loop should be vectorised
#pragma omp simd [clauses]
or
'Somp simd [clauses]

Executes iterations of following loop in SIMD chunks

Loop is not divided across threads

SIMD chunk is set of iterations executed concurrently by
SIMD lanes

Not a hint! Programmer is asserting independence of
iterations.

epcc

; 5
Y <7 | €
~
=
o
s

Clauses control data environment, how loop is partitioned
safelen (length) limits the number of iterations in a SIMD

chunk.

linear lists variables with a linear relationship to the iteration
space (induction variables)

aligned specifies byte alignments of a list of variables
private, lastprivate, reduction and collapse have

usual meanings.
Also declare simd directive to generate SIMDised versions

of functions.

Can be combined with loop constructs (parallelise and
vectorise)

#pragma omp for simd

epcc

3 5
‘zfv 71
o &
]
o)
i

