
ARCHER Single Node

Optimisation
Vectorisation

Slides contributed by Cray and EPCC

Vector Instructions (Vectorisation)

• Modern CPUs can perform multiple operations each cycle

• Use special SIMD (Single Instruction Multiple Data) instructions

• e.g. SSE, AVX

• Operate on a "vector" of data

• typically 2 or 4 double precision floats (on Ivy Bridge)

• Potentially gives speedup in floating point operations

• Usually only one loop is vectorisable in loop nest

• And most compilers only consider inner loop

• Optimising compilers will use vector instructions

• Relies on code being vectorisable

• ...or in a form that the compiler can convert to be vectorisable

• Some compilers are better at this than others

• But there are some general guidelines about what is likely to work...

Requirements for vectorisation

• Loops must have determinable (at run time) trip count

• rules out most while loops

• Loops must not contain function/subroutine calls

• unless the call can be inlined by the compiler

• maths library functions usually OK

• Loops must not contain braches or jumps

• guarded assignments may be OK

• e.g. if (a[i] != 0.0) b[i] = c * a[i];

• Loop trip counts needs to be long, or else a multiple of the

vector length

• Loops must no have dependencies between iterations
• reductions usually OK, e.g. sum += a[i];

• avoid induction variables e.g. indx += 3;

• use restrict

• may need to tell the compiler if it can’t work it out for itself

• Aligned data is best
• e.g. AVX vector loads/stores operate most effectively on 32-bytes

aligned address

• need to either let the compiler align the data....

• ..or tell it what the alignment is

• Unit stride through memory is best

Did my loop get vectorised?

• Always check the compiler output to see what it did

• CCE: -hlist=a

• GNU: -fdump-tree-vect-all=<filename>

• Intel: -opt-report3

• or (for the hard core) check the assembler generated

• Clues from CrayPAT's HWPC measurements

• export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP

• Complicated, but look for ratio of operations/instructions > 1

• expect 4 for pure AVX with double precision floats

Example
16. + 1-------< do j = 1,N

17. 1 x = xinit

18. + 1 r4----< do i = 1,N

19. 1 r4 x = x + vexpr(i,j)

20. 1 r4 y(i) = y(i) + x

21. 1 r4----> end do

22. 1-------> end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

 A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

 A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

 A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms

38. Vf------< do j = 1,N
39. Vf x(j) = xinit
40. Vf------> end do
41.
42. ir4-----< do j = 1,N
43. ir4 if--< do i = 1,N
44. ir4 if x(j) = x(j) + vexpr(i,j)
45. ir4 if y(i) = y(i) + x(j)
46. ir4 if--> end do
47. ir4-----> end do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

 A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

 A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

 A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was unrolled 4 times.

1.089ms

-37%

x promoted to vector:

trade slightly more memory

for better performance

OpenMP 4.0 SIMD directives

• Many compilers support their own sets of directives to

assist the compiler to vectorise loops.

• useful but not portable

• OpenMP 4.0 contains a standardised set of directives

• Currently supported by Intel and GNU compilers on

ARCHER

• Cray coming soon.....

Portable SIMD directives
• Use simd directive to indicate a loop should be vectorised

#pragma omp simd [clauses]

or

!$omp simd [clauses]

• Executes iterations of following loop in SIMD chunks

• Loop is not divided across threads

• SIMD chunk is set of iterations executed concurrently by

SIMD lanes

• Not a hint! Programmer is asserting independence of

iterations.

• Clauses control data environment, how loop is partitioned
• safelen(length) limits the number of iterations in a SIMD

chunk.
• linear lists variables with a linear relationship to the iteration

space (induction variables)
• aligned specifies byte alignments of a list of variables

• private, lastprivate, reduction and collapse have

usual meanings.
• Also declare simd directive to generate SIMDised versions

of functions.

• Can be combined with loop constructs (parallelise and
vectorise)

• #pragma omp for simd

