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Overview 

• Lecture will cover 

- Why is IO difficult 

- Why is parallel IO even worse 

- Straightforward solutions in parallel 

- What is parallel IO trying  to achieve? 

- Files as arrays 

- MPI-IO and derived data types 
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Why is IO hard? 

• Breaks out of the nice process/memory model 
- data in memory has to physically appear on an external device 

• Files are very restrictive 
- linear access probably implies remapping of program data 

- just a string of bytes with no memory of their meaning 

 

• Many, many system-specific options to IO calls 

• Different formats 
- text, binary, big/little endian, Fortran unformatted, ... 

• Disk systems are very complicated 
- RAID disks, many layers of caching on disk, in memory, ... 

• IO is the HPC equivalent of printing! 
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Why is Parallel IO Harder? 

• Cannot have multiple processes writing a single file 
- Unix generally cannot cope with this 

- data cached in units of disk blocks (eg 4K) and is not coherent 

- not even sufficient to have processes writing to distinct parts of file 

 

• Even reading can be difficult 
- 1024 processes opening a file can overload the filesystem (fs) 

 

• Data is distributed across different processes 
- processes do not in general own contiguous chunks of the file 

- cannot easily do linear writes 

- local data may have halos to be stripped off 
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Simultaneous Access to Files 
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Parallel File Systems 

• Parallel computer 

- constructed of many processors 

- each processor not particularly fast 

- performance comes from using many processors at once 

- requires distribution of data and calculation across processors 

• Parallel file systems 

- constructed from many standard disk 

- performance comes from reading / writing to many disks 

- requires many clients to read / write to different disks at once 

- data from a single file must be striped across many disks 

• Must appear as a single file system to user 

- typically have a single MedaData Server (MDS) 

- can become a bottleneck for performance 
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Parallel File Systems: Lustre 
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Lustre data striping 
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Parallel File Systems 

• Allow multiple IO processes to access same file 
– increases bandwidth 

 

• Typically optimised for bandwidth 
– not for latency 

– e.g. reading/writing small amounts of data is very inefficient 

 

• Very difficult for general user to configure and use 
– need some kind of higher level abstraction 

– allow user to focus on data layout across user processes 

– don’t want to worry about how file is split across IO servers 
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4x4 array on 2x2 Process Grid 
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Shared Memory 
• Easy to solve in shared memory 

 

- imagine a shared array called x 

 

  begin serial region 

   open the file 

   write x to the file 

   close the file 

  end serial region 

 

• Simple as every thread can access shared data 
- may not be efficient but it works 

 

• But what about message-passing? 
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Message Passing: Naive Solutions 
• Master IO 

- send all data to/from master and write/read a single file 

- quickly run out of memory on the master 

• or have to write in many small chunks 

- does not benefit from a parallel fs that supports multiple write streams 

 

• Separate files 

- each process writes to a local fs and user copies back to home 

- or each process opens a unique file (dataXXX.dat) on shared fs 

 

• Major problem with separate files is reassembling data 

- file contents dependent on number of CPUs and decomposition 

- pre / post-processing steps needed to change number of processes 

- but at least this approach means that reads and writes are in parallel 
 

• But may overload filesystem for many processes 
- e.g. MDS cannot keep up with requests 
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2x2 to 1x4 Redistribution 
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What do we Need? 

• A way to do parallel IO properly 

- where the IO system deals with all the system specifics 

• Want a single file format 

- We already have one: the serial format 

 

• All files should have same format as a serial file 

- entries stored according to position in global array 

• not dependent on which process owns them 

- order should always be 1, 2, 3, 4, ...., 15, 16 
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Information on Machine 

• What does the IO system need to know about the parallel 

machine? 

- all the system-specific fs details 

- block sizes, number of IO servers, etc. 

 

• All this detail should be hidden from the user 

- but the user may still wish to pass system-specific options … 
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2 x OSSs and 8 x OSTs (Object Storage Targets) 

- Contains Storage controller, Lustre server, disk controller 
and RAID engine 

- Each unit is 2 OSSs each with 4 OSTs of 10 (8+2) disks in a 
RAID6 array 

SSU: Scalable Storage Unit 

MMU: Metadata Management Unit 

Lustre MetaData Server 
● Contains server hardware and storage 

Multiple SSUs are combined to form 
storage racks 

ARCHER’s Cray Sonexion Storage 



ARCHER’s File systems 

/fs2 
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Information on Data Layout 

• What does the IO system need to know about the data? 

- how the local arrays should be stitched together to form the file 

 

• But ... 

- mapping from local data to the global file is only in the mind of the 

programmer! 

- the program does not know that we imagine the processes to be 

arranged in a 2D grid 

 

• How do we describe data layout to the IO system 

- without introducing a whole new concept to MPI? 

- cartesian topologies are not sufficient 

• do not distinguish between block and block-cyclic decompositions 
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Programmer View vs Machine View 
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Files vs Arrays 

• Think of the file as a large array 

- forget that IO actually goes to disk 

- imagine we are recreating a single large array on a master process 

 

• The IO system must create this array and save to disk 

- without running out of memory 

• never actually creating the entire array 

• ie without doing naive master IO 

- and by doing a small number of large IO operations 

• merge data to write large contiguous sections at a time 

- utilising any parallel features 

• doing multiple simultaneous writes if there are multiple IO nodes 

• managing any coherency issues re file blocks 
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MPI-IO Approach 

• MPI-IO is part of the MPI standard 

- http://www.mpi-forum.org/docs/docs.html 

 

• Each process needs to describe what subsection of the 

global array it holds 

- it is entirely up to the programmer to ensure that these do not 

overlap for write operations! 

• Programmer needs to be able to pass system-specific 

information 

- pass an info object to all calls 
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Data Sections 

• Describe 2x2 subsection of 4x4 array 

• Using standard MPI derived datatypes 

• A number of different ways to do this 

- we will cover three methods in the course 
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Summary 

• Parallel IO is difficult 

- in theory and in practice 
 

• MPI-IO provides a higher-level abstraction 

- user describes global data layout using derived datatypes 

- MPI-IO hides all the system specific fs details … 

- … but (hopefully) takes advantage of them for performance 
 

• More flexible formats like NetCDF and HDF5 exist 

- they gain performance by layering on top of MPI-IO 

 

• User requires a good understanding of derived datatypes 

- see next lecture 
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