
Advanced Parallel

Programming
Overview of Parallel IO

1

ARCHER Training

Courses
Sponsors

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview

• Lecture will cover

- Why is IO difficult

- Why is parallel IO even worse

- Straightforward solutions in parallel

- What is parallel IO trying to achieve?

- Files as arrays

- MPI-IO and derived data types

4

Why is IO hard?

• Breaks out of the nice process/memory model
- data in memory has to physically appear on an external device

• Files are very restrictive
- linear access probably implies remapping of program data

- just a string of bytes with no memory of their meaning

• Many, many system-specific options to IO calls

• Different formats
- text, binary, big/little endian, Fortran unformatted, ...

• Disk systems are very complicated
- RAID disks, many layers of caching on disk, in memory, ...

• IO is the HPC equivalent of printing!

5

Why is Parallel IO Harder?

• Cannot have multiple processes writing a single file
- Unix generally cannot cope with this

- data cached in units of disk blocks (eg 4K) and is not coherent

- not even sufficient to have processes writing to distinct parts of file

• Even reading can be difficult
- 1024 processes opening a file can overload the filesystem (fs)

• Data is distributed across different processes
- processes do not in general own contiguous chunks of the file

- cannot easily do linear writes

- local data may have halos to be stripped off

6

Simultaneous Access to Files

7

Disk block 0 Disk block 1 Disk block 2

Process 0

Process 1

Disk cache

Disk cache

File

Parallel File Systems

• Parallel computer

- constructed of many processors

- each processor not particularly fast

- performance comes from using many processors at once

- requires distribution of data and calculation across processors

• Parallel file systems

- constructed from many standard disk

- performance comes from reading / writing to many disks

- requires many clients to read / write to different disks at once

- data from a single file must be striped across many disks

• Must appear as a single file system to user

- typically have a single MedaData Server (MDS)

- can become a bottleneck for performance

8

Parallel File Systems: Lustre

9

Lustre data striping

10

Single logical user

file e.g.
/work/y02/y02/ted

OS/file-system

automatically

divides the file into

stripes

Stripes read/written to/from

their assigned OST

Lustre’s performance comes from

striping files over multiple OSTs

Parallel File Systems

• Allow multiple IO processes to access same file
– increases bandwidth

• Typically optimised for bandwidth
– not for latency

– e.g. reading/writing small amounts of data is very inefficient

• Very difficult for general user to configure and use
– need some kind of higher level abstraction

– allow user to focus on data layout across user processes

– don’t want to worry about how file is split across IO servers

11

4x4 array on 2x2 Process Grid

12

1 2 3 4

Parallel Data

File

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

Shared Memory
• Easy to solve in shared memory

- imagine a shared array called x

 begin serial region

 open the file

 write x to the file

 close the file

 end serial region

• Simple as every thread can access shared data
- may not be efficient but it works

• But what about message-passing?

13

Message Passing: Naive Solutions
• Master IO

- send all data to/from master and write/read a single file

- quickly run out of memory on the master

• or have to write in many small chunks

- does not benefit from a parallel fs that supports multiple write streams

• Separate files

- each process writes to a local fs and user copies back to home

- or each process opens a unique file (dataXXX.dat) on shared fs

• Major problem with separate files is reassembling data

- file contents dependent on number of CPUs and decomposition

- pre / post-processing steps needed to change number of processes

- but at least this approach means that reads and writes are in parallel

• But may overload filesystem for many processes
- e.g. MDS cannot keep up with requests

14

2x2 to 1x4 Redistribution

15

9

10

13

14

data1.dat

data2.dat

data3.dat

data4.dat

write

1

2

3

4

5

6

7

8

11

12

15

16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

newdata4.dat

newdata3.dat

newdata2.dat

newdata1.dat

read

1

3

9

11

2

4

10

12

5

7

13

15

14

16

6

8

reorder

What do we Need?

• A way to do parallel IO properly

- where the IO system deals with all the system specifics

• Want a single file format

- We already have one: the serial format

• All files should have same format as a serial file

- entries stored according to position in global array

• not dependent on which process owns them

- order should always be 1, 2, 3, 4,, 15, 16

16

Information on Machine

• What does the IO system need to know about the parallel

machine?

- all the system-specific fs details

- block sizes, number of IO servers, etc.

• All this detail should be hidden from the user

- but the user may still wish to pass system-specific options …

17

1

8

2 x OSSs and 8 x OSTs (Object Storage Targets)

- Contains Storage controller, Lustre server, disk controller
and RAID engine

- Each unit is 2 OSSs each with 4 OSTs of 10 (8+2) disks in a
RAID6 array

SSU: Scalable Storage Unit

MMU: Metadata Management Unit

Lustre MetaData Server
● Contains server hardware and storage

Multiple SSUs are combined to form
storage racks

ARCHER’s Cray Sonexion Storage

ARCHER’s File systems

/fs2
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per

HDD

1.4 PB Total

/fs3
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per

HDD

1.4 PB Total

/fs4
7 SSUs

14 OSSs

56 OSTs

560 HDDs

4TB per

HDD

1.6 PB Total

Infiniband

Network

Connected to

the Cray

XC30 via

LNET router

service

nodes.

19

Information on Data Layout

• What does the IO system need to know about the data?

- how the local arrays should be stitched together to form the file

• But ...

- mapping from local data to the global file is only in the mind of the

programmer!

- the program does not know that we imagine the processes to be

arranged in a 2D grid

• How do we describe data layout to the IO system

- without introducing a whole new concept to MPI?

- cartesian topologies are not sufficient

• do not distinguish between block and block-cyclic decompositions

20

Programmer View vs Machine View

21

1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 3 4
9

10

13

14

1

2

3

4

5

6

7

8

11

12

15

16

Files vs Arrays

• Think of the file as a large array

- forget that IO actually goes to disk

- imagine we are recreating a single large array on a master process

• The IO system must create this array and save to disk

- without running out of memory

• never actually creating the entire array

• ie without doing naive master IO

- and by doing a small number of large IO operations

• merge data to write large contiguous sections at a time

- utilising any parallel features

• doing multiple simultaneous writes if there are multiple IO nodes

• managing any coherency issues re file blocks

22

MPI-IO Approach

• MPI-IO is part of the MPI standard

- http://www.mpi-forum.org/docs/docs.html

• Each process needs to describe what subsection of the

global array it holds

- it is entirely up to the programmer to ensure that these do not

overlap for write operations!

• Programmer needs to be able to pass system-specific

information

- pass an info object to all calls

23

Data Sections

• Describe 2x2 subsection of 4x4 array

• Using standard MPI derived datatypes

• A number of different ways to do this

- we will cover three methods in the course

24

on process 3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

3

9

10

13

14

1

2

3

4

5

6

7

8

11

12

15

16

Summary

• Parallel IO is difficult

- in theory and in practice

• MPI-IO provides a higher-level abstraction

- user describes global data layout using derived datatypes

- MPI-IO hides all the system specific fs details …

- … but (hopefully) takes advantage of them for performance

• More flexible formats like NetCDF and HDF5 exist

- they gain performance by layering on top of MPI-IO

• User requires a good understanding of derived datatypes

- see next lecture

25

