
Advanced OpenMP

OpenMP 4.0/4.5



OpenMP 4.0
• Version 4.0 was released in July 2013

-now available in most production compilers

• Version 4.5 was released in Nov 2015
-corrections and a few new features
-some full implementations

2



What’s new in 4.0
• User defined reductions
• Construct cancellation 
• Portable SIMD directives
• Extensions to tasking
• Thread affinity
• Accelerator offload support

3



User defined reductions
• As of 3.1 cannot do reductions on objects or structures.
• UDR extensions in 4.0 add support for this.

• Use declare reduction directive to define new reduction 
operators

• New operators can then be used in reduction clause.

#pragma omp declare reduction (reduction-identifier : 
typename-list : combiner) [identity(identity-expr)] 

4



• reduction-identifier gives a name to the operator
- Can be overloaded for different types
- Can be redefined in inner scopes

• typename-list is a list of types to which it applies
• combiner expression specifies how to combine values
• identity can specify the identity value of the operator

Can be an expression or a brace initializer 

5



Example
#pragma omp declare reduction (merge : std::vector<int> 
: omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

• Private copies created for a reduction are initialized to the 
identity that was specified for the operator and type 
- Default identity defined if identity clause not present 

• Compiler uses combiner to combine private copies 
• omp_out refers to private copy that holds combined values
• omp_in refers to the other private copy 
• Can now use merge as a reduction operator. 

6



Construct cancellation
• Clean way to signal early termination of an OpenMP

construct.
- one thread signals
- other threads jump to the end of the construct

!$omp cancel construct [if (expr)]

where construct is parallel, sections, do or taskgroup
cancels the construct

!$omp cancellation point construct
checks for cancellation (also happens implicitly at cancel 
directive, barriers etc.)

7



Example
!$omp parallel do private(eureka)
do i=1,n

eureka = testing(i,...) 
!$omp cancel parallel if(eureka) 
end do 

• First thread for which eureka is true will cancel the parallel 
region and exit.

• Other threads exit next time they hit the cancel directive

8



Portable SIMD directives
• Many compilers support SIMD directives to aid vectorisation of 

loops.
- compiler can struggle to generate SIMD code without these

• OpenMP 4.0 provides a standardised set
• Use simd directive to indicate a loop should be SIMDized
#pragma omp simd [clauses] 
• Executes iterations of following loop in SIMD chunks 
• Loop is not divided across threads 
• SIMD chunk is set of iterations executed concurrently by 

SIMD lanes 

9



• Clauses control data environment, how loop is partitioned 
• safelen(length) limits the number of iterations in a SIMD 

chunk. 
• linear lists variables with a linear relationship to the iteration 

space
• aligned specifies byte alignments of a list of variables
• private, lastprivate, reduction and collapse have 

usual meanings.
• Also declare simd directive to generate SIMDised versions 

of functions.
• Can be combined with loop constructs (parallelise and 

SIMDise)

10



Extensions to tasking
• taskgroup directive provide allow task to wait for all 

descendant tasks to complete
• Compare taskwait, which only waits for children

#pragma omp taskgroup
{ 

create_a_group_of_tasks(could_create_nested_tasks); 
} // all created tasks complete by here

11



Task dependencies
• depend clause on task construct

!$omp task depend(type:list) 
where type is in, out or inout and list is a list of variables.
- list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++

• in: the generated task will be a dependent task of all 
previously generated sibling tasks that reference at least one 
of the list items in an out or inout clause. 

• out or inout: the generated task will be a dependent task of 
all previously generated sibling tasks that reference at least 
one of the list items in in, out or inout clause. 

12



Example
#pragma omp task depend (out:a)

{ ... } 
#pragma omp task depend (out:b)

{ ... } 
#pragma omp task depend (in:a,b)

{ ... } 

• The first two tasks can execute in parallel
• The third task cannot start until both the first two are complete

13



Thread affinity
• Since many systems are now NUMA and SMT, placement of 

threads on the hardware can have a big effect on 
performance.

• Up until now, control of this in OpenMP is very limited. 
• Some compilers have their own extensions.
• OpenMP 4.0 gives much more control

14



Affinity environment
• Increased choices for  OMP_PROC_BIND
• Can still specify true or false 
• Can now provide a list (possible item values: master, close

or spread) to specify how to bind parallel regions at different 
nesting levels. 

• Added OMP_PLACES environment variable 
• Can specify abstract names including threads, cores and 

sockets 
• Can specify an explicit ordered list of places 
• Place numbering is implementation defined 

15



Example
export OMP_PLACES=threads

export OMP_PROC_BIND=“spread,close”

16



Accelerator support

• Similar to, but not the same as, OpenACC directives.
• Support for more than just loops
• Less reliance on compiler to parallelise and map code to 

threads
• Not GPU specific
• Fully integrated into OpenMP

17



• Host-centric model with one host device and multiple 
target devices of the same type.

• device: a logical execution engine with local storage.
• device data environment: a data environment associated 

with a target data or target region.
• target constructs control how data and code is 

offloaded to a device.
• Data is mapped from a host data environment to a device 

data environment.

18



• Code inside target region is executed on the device. 
• Executes sequentially by default. 
• Can include other OpenMP directives to run in parallel
• Clauses to control data movement. 
#pragma omp target map(to:B,C), map(tofrom:sum)
#pragma omp parallel for reduction(+:sum)
for (int i=0; i<N; i++){

sum += B[i] + C[i];
}

19



• target data construct just moves data and does not 
execute code (c.f. #pragma acc data in OpenACC.

• target update construct updates data during a target data 
region.  

• declare target compiles a version of function/subroutine 
that can be called on the device. 

• Target regions are blocking: the encountering thread waits for 
them to complete.
- Asynchronous behaviour can be achieved by using target regions inside 

tasks (with dependencies if required).

20



What about GPUs? 
• Executing a target region on a GPU can only use one 

multiprocessor
- synchronisation required for OpenMP not possible between 

multiprocessors
- not much use! 

• teams construct creates multiple master threads which can 
execute in parallel, spawn parallel regions, but not 
synchronise or communicate with each other.

• distribute construct spreads the iterations of a parallel 
loop across teams.
-Only schedule option is static (with optional chunksize).

21



Example
#pragma omp target teams distribute parallel for\
map(to:B,C), map(tofrom:sum) reduction(+:sum)
for (int i=0; i<N; i++){

sum += B[i] + C[i];
}

• Distributes iterations across multiprocessors and across threads 
within each multiprocessor.

22


