Advanced OpenMP

Other threading APls

EPSR
epcc

What's wrong with OpenMP?

- OpenMP is designed for programs where you want a fixed
number of threads, and you always want the threads to be
consuming CPU cycles.

- cannot arbitrarily start/stop threads

- cannot put threads to sleep and wake them up later

- OpenMP is good for programs where each thread is doing
(more-or-less) the same thing.

- Although OpenMP supports C++, it's not especially OO
friendly
- though it is gradually getting better.

- OpenMP doesn’t support other popular base languages
- e.g. Java, Python

epcc 2

What's wrong with OpenMP? (cont.)

C thi Can’t do this
an do this Can do this

epcc 3

Threaded programming APIs

- Essential features
- a way to create threads
- a way to wait for a thread to finish its work
- a mechanism to support thread private data

- some basic synchronisation methods
- at least a mutex lock, or atomic operations

- Optional features

- support for tasks

- more synchronisation methods
- e.g. condition variables, barriers,...

- higher levels of abstraction
- e.g. parallel loops, reductions

epcc 4

What are the alternatives?

- POSIX threads
- C++ threads

- Intel TBB

- Cilk

- OpenCL

- Java

(not an exhaustive list!)

epcc :

POSIX threads

POSIX threads (or Pthreads) is a standard library for shared

memory programming without directives.
Part of the ANSI/IEEE 1003.1 standard (1996)

Interface is a C library

no standard Fortran interface
can be used with C++, but not OO friendly

Widely available

even for Windows
typically installed as part of OS
code is pretty portable

Lots of low-level control over behaviour of threads

Lacks a proper memory consistency model

epcc 6

Thread forking

#include <pthread.h>

int pthread create(
pthread t *thread,
const pthread attr t *attr,
void* (*start routine, void¥),
void *arg)

- Creates a new thread:

- first argument returns a pointer to a thread descriptor.
- can set attributes.
- new thread will execute start routine (arg)

- return value is error code.

epcc :

Thread joining
#include <pthread.h>

int pthread join(
pthread t thread,
void **value ptr)

- Waits for the specified thread to finish.
- thread finishes when start routine exits
- second argument holds return value from start routine

epcc 8

Synchronisation

- Barriers
- need to specify how many threads will check in

- Mutex locks
- behaviour is essentially the same as the OpenMP lock routines.

- Condition variables

- allows a thread to put itself to sleep and be woken up by another thread
at some point in the future

- not especially useful in HPC applications
- ¢.f. wait/notify in Java

epcc 9

Hello World

#include <pthread.h>
#define NTHREADS 5

int i, threadnum[NTHREADS] ;
pthread t tid[NTHREADS];

for (i=0; i<NTHREADS; i++) {
threadnum[i]=1i;
pthread create(&tid[i], NULL, hello, &threadnum[i]);

for (1i=0; i<NTHREADS; i++)
pthread join(tid[i], NULL);

epcc :

Hello World (cont.)

void* hello (void *arg) {

int myid;

myid = *(int *)arg;
printf (“Hello world from thread %d\n”, myid) ;

return (0);

cpcc "

C++11 threads

- Library for multithreaded programming built in to C++11 standard

- Similar functionality to POSIX threads

- but with a proper OO interface
- based quite heavily on BOOST threads library

- Portable
- depends on C++11 support, OK in gcc, Intel, clang, MS

- Threads are C++ objects

- call a constructor to create a thread

- Synchronisation

- mutex locks
- condition variables
- C++11 atomics

epcc :

Hello world

#include <thread>
#include <iostream>

#include <vector>

void hello() {

std: :cout << "Hello from thread " << std::this thread::get_id() <<
std: :endl;

}
int main () {
std: :vector<std::thread> threads;
for(int 1 = 0; 1 < 5; ++1i){
threads.push back(std::thread(hello)) ;

}
for (auto& thread : threads) {

thread. join() ;

}

epcc .

Intel Thread Building Blocks (TBB)

- C++ library for multithreaded programming

- Offers somewhat higher level of abstraction that
POSIX/C++11 threads
- notion of tasks rather that explicit threads
- support for parallel loops and reductions
- mutexs and atomic operations, concurrency on containers

- Moderately portable

- support for Intel and gcc compilers on Linux and Mac OS X, Intel and
Visual C++ on Windows

- no build required to install

epcc ’

Hello World

#include <iostream>
#include <tbb/parallel for.h>

using namespace tbb;

class Hello

{

public:

void operator () (int x) const {
std: :cout << "Hello world\n";

}
};

int main()

{

// parallelizing:

// for(int i = 0; 1 < 2; ++i) { ... }
parallel for(0, 2, 1, Hello()):

return 0;

epcc| .

Cilk

Very minimal API which supports spawning and joining of
tasks
C/C++ with a few extra keywords

Commercial implementation by Intel
Intel Cilk Plus, built in to Intel C++ compiler
not very portable

Support for parallel loops and reductions
No locks, but can use pthread or TBB mutexes.

Still unclear whether it is really useful for real-world
applications!

epcc ’

Hello World

#include <stdio.h>
#include <cilk/cilk.h>

static void hello () {

printf ("Hello ");

int main () {
cilk spawn hello();

cilk sync;

epcc .

OpenCL

API designed for programming heterogeneous systems
(GPUs, DSPs, etc).

but can also execute on regular CPUs
Open standard administered by Khronos Group

Based on C99 with some extra keywords, large set of runtime
library routines

CPU implementations from Intel, IBM
Very low level (c.f. CUDA), lots of boiler-plate code required

Performance (and performance portability) not convincingly
demonstrated....

epcc .

OpenCL

Quite a different model from other threaded APls

Execute host code on CPU which launches kernels to execute
on a device (typically GPU, but could be the CPU)

Need to explicitly transfer data from host to device (and back
again)
Kernel executes on multiple threads

can get a thread identifier

Limited ability to synchronise between threads
barrier only inside a “workgroup”
atomics

Can specify orderings between kernels

epcc .

Hello World

__kernel void hello(_ global char* string)

{

string[0] = 'H';
string[l] = 'e';
string[2] = '1';
string[3] = '1';
string[4] = 'o';
string[5] = ',"';
string[6] = ' ';
string[7] = 'W';
string[8] = 'o';
string[9] = 'r';
string[10] = '1"';
string[1l1l] = '4d';
string[12] = '!';
string[13] = '\0';

}

epcc :

#include <stdio.h>

#include <stdlib.h>
#include <CL/cl.h> cl kernel kernel = NULL;

cl program program = NULL;

cl platform id platform id = NULL;

#idefine MEM SIZE (128) cl uint ret num devices;

##define MAX SOURCE SIZE (0x100000)]
- - cl uint ret num platforms;

int main () cl_int ret;

{

cl device id device_id = NULL; char string[MEM SIZE];
cl context context = NULL;

cl command queue command queue = NULL;
cl mem memobj = NULL; FILE *fp;

char fileName[] = "./hello.cl";

char *source_str;

size_t source_size;

epcc s

/* Load the source code containing
the kernel*/

fp = fopen(fileName, '"r");
if ('fp) {
fprintf (stderr, "Failed to load

kernel.\n") ;
exit(1l);
}

source_str =
(char*)malloc (MAX SOURCE_SIZE) ;

source size = fread(source str, 1,

MAX SOURCE_SIZE, fp);
fclose (fp) ;
/* Get Platform and Device Info */

ret = clGetPlatformIDs (1,
&platform id, &ret num platforms);

ret = clGetDevicelIDs (platform id,
CL DEVICE TYPE DEFAULT, 1, &device_id,

&ret num devices);

CSPCC

/* Create OpenCL context */

context = clCreateContext (NULL, 1,
&device id, NULL, NULL, &ret);

/* Create Command Queue */
command queue =
clCreateCommandQueue (context,
device _id, 0, &ret);

/* Create Memory Buffer */

memobj = clCreateBuffer (context,
CL MEM READ WRITE,MEM SIZE *
sizeof (char), NULL, &ret);

/* Create Kernel Program from the
source */

program =
clCreateProgramWithSource (context, 1,

(const char *¥*)&source str,

(const size t *)&source_size, &ret);

/* Build Kernel Program */ /* Display Result */

ret = clBuildProgram(program, 1, puts (string) ;

&device id, NULL, NULL, NULL); /% Finalization */

*
/* Create OpenCL Kernel */ ret = clFlush(command queue) ;

kernel = clCreateKernel (program,
"hello", &ret);

ret = clFinish(command queue) ;

ret = clReleaseKernel (kernel) ;

/* Set OpenCL Kernel Parameters */
ret = clReleaseProgram(program) ;

ret = clSetKernelArg(kernel, O,))

ret = clReleaseMemObject (memobj) ;
sizeof (cl mem), (void *)&memobj) ;

ret =
/* Execute OpenCL Kernel */

clReleaseCommandQueue (command queue) ;

ret = clEnqueueTask (command queue,
kernel, 0, NULL,NULL) ;

ret = clReleaseContext (context) ;

free (source str);
/* Copy results from the memory buffer -

*/

ret =

return 0;

}
clEnqueueReadBuffer (command queue,
memobj, CL TRUE, O,

MEM SIZE * sizeof (char),string, O,
NULL, NULL);

epcc .

Java threads

- Built in to the Java language specification
- highly portable

- Threads are Java objects
- created by calling a constructor

- Synchronisation

- synchronised blocks and methods
- act as a critical region
- specify an object to synchronise on
- every object has an associated lock

- also explicit locks, atomic classes, barriers, semaphores, wait/notify

epcc ’

Hello World

class Example {
public static void main(String args|[]) {
Thread thread object [] = new Thread[nthread];
for(int i=0; i<nthread; i++) {
thread object[i] = new Thread(new MyClass(i));
thread object[i].start();
}
for(int i=0; i<nthread; i++) {
try{
thread object[i].join();
}catch (InterruptedException x){}

epcc :

Hello World (cont.)

class MyClass implements Runnable {

int id;
public MyClass (int id) {

this.id = id;

public void run() {
System.out.println("Hello World from Thread” + id);

epcc :

Java Tasks

- Create an Executor Service with a pool of threads

ExecutorService ex = Executors.newFixedThreadPool (nthreads) ;

- Submitting tasks

- Submit method submits a task for execution and returns a Future representing
that task

Future ft = ex.submit(new Myclass(i))

- Future
- Represents the status and result of an asynchronous computation

- Provides methods to check if computation is complete, to wait for completion
and, if appropriate, retrieve the result of the computation

epcc .

