
Advanced OpenMP

Other threading APIs

What’s wrong with OpenMP?
• OpenMP is designed for programs where you want a fixed

number of threads, and you always want the threads to be
consuming CPU cycles.
- cannot arbitrarily start/stop threads

- cannot put threads to sleep and wake them up later

• OpenMP is good for programs where each thread is doing
(more-or-less) the same thing.

• Although OpenMP supports C++, it’s not especially OO
friendly
- though it is gradually getting better.

• OpenMP doesn’t support other popular base languages
- e.g. Java, Python

2

What’s wrong with OpenMP? (cont.)

Can do this Can’t do this
Can do this

3

Threaded programming APIs
• Essential features
- a way to create threads
- a way to wait for a thread to finish its work
- a mechanism to support thread private data
- some basic synchronisation methods

• at least a mutex lock, or atomic operations

• Optional features
- support for tasks
-more synchronisation methods

• e.g. condition variables, barriers,...
- higher levels of abstraction

• e.g. parallel loops, reductions

4

What are the alternatives?
• POSIX threads
• C++ threads
• Intel TBB
• Cilk
• OpenCL
• Java

(not an exhaustive list!)

5

POSIX threads

• POSIX threads (or Pthreads) is a standard library for shared

memory programming without directives.

- Part of the ANSI/IEEE 1003.1 standard (1996)

• Interface is a C library

- no standard Fortran interface

- can be used with C++, but not OO friendly

• Widely available

- even for Windows

- typically installed as part of OS

- code is pretty portable

• Lots of low-level control over behaviour of threads

• Lacks a proper memory consistency model

6

Thread forking
#include <pthread.h>

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void*(*start_routine, void*),
void *arg)

• Creates a new thread:
- first argument returns a pointer to a thread descriptor.
- can set attributes.
- new thread will execute start_routine(arg)
- return value is error code.

7

Thread joining
#include <pthread.h>

int pthread_join(
pthread_t thread,
void **value_ptr)

• Waits for the specified thread to finish.
- thread finishes when start_routine exits
- second argument holds return value from start_routine

8

Synchronisation
• Barriers
- need to specify how many threads will check in

• Mutex locks
- behaviour is essentially the same as the OpenMP lock routines.

• Condition variables
- allows a thread to put itself to sleep and be woken up by another thread

at some point in the future
- not especially useful in HPC applications
- c.f. wait/notify in Java

9

Hello World
#include <pthread.h>
#define NTHREADS 5
int i, threadnum[NTHREADS];
pthread_t tid[NTHREADS];

for (i=0; i<NTHREADS; i++) {
threadnum[i]=i;
pthread_create(&tid[i], NULL, hello, &threadnum[i]);

}

for (i=0; i<NTHREADS; i++)
pthread_join(tid[i], NULL);

10

Hello World (cont.)

void* hello (void *arg) {
int myid;

myid = *(int *)arg;
printf(“Hello world from thread %d\n”, myid);

return (0);
}

11

C++11 threads
• Library for multithreaded programming built in to C++11 standard

• Similar functionality to POSIX threads
- but with a proper OO interface
- based quite heavily on BOOST threads library

• Portable

- depends on C++11 support, OK in gcc, Intel, clang, MS

• Threads are C++ objects

- call a constructor to create a thread

• Synchronisation
- mutex locks
- condition variables
- C++11 atomics

12

Hello world
#include <thread>

#include <iostream>

#include <vector>

void hello(){

std::cout << "Hello from thread " << std::this_thread::get_id() <<
std::endl;

}

int main(){

std::vector<std::thread> threads;

for(int i = 0; i < 5; ++i){

threads.push_back(std::thread(hello));

}

for(auto& thread : threads){

thread.join();

}

}

13

Intel Thread Building Blocks (TBB)
• C++ library for multithreaded programming
• Offers somewhat higher level of abstraction that

POSIX/C++11 threads
- notion of tasks rather that explicit threads
- support for parallel loops and reductions
-mutexs and atomic operations, concurrency on containers

• Moderately portable
- support for Intel and gcc compilers on Linux and Mac OS X, Intel and

Visual C++ on Windows
- no build required to install

14

Hello World
#include <iostream>

#include <tbb/parallel_for.h>

using namespace tbb;

class Hello
{
public:
void operator()(int x) const {
std::cout << "Hello world\n";
}
};

int main()
{
// parallelizing:
// for(int i = 0; i < 2; ++i) { ... }
parallel_for(0, 2, 1, Hello());

return 0;
} 15

Cilk

• Very minimal API which supports spawning and joining of

tasks

- C/C++ with a few extra keywords

• Commercial implementation by Intel

- Intel Cilk Plus, built in to Intel C++ compiler

- not very portable

• Support for parallel loops and reductions

- No locks, but can use pthread or TBB mutexes.

• Still unclear whether it is really useful for real-world

applications!

16

Hello World
#include <stdio.h>
#include <cilk/cilk.h>

static void hello(){
printf("Hello ");

}

int main(){
cilk_spawn hello();
cilk_sync;

}

17

OpenCL
• API designed for programming heterogeneous systems

(GPUs, DSPs, etc).
- but can also execute on regular CPUs

• Open standard administered by Khronos Group

• Based on C99 with some extra keywords, large set of runtime
library routines

• CPU implementations from Intel, IBM
• Very low level (c.f. CUDA), lots of boiler-plate code required

• Performance (and performance portability) not convincingly
demonstrated....

18

OpenCL
• Quite a different model from other threaded APIs
• Execute host code on CPU which launches kernels to execute

on a device (typically GPU, but could be the CPU)
• Need to explicitly transfer data from host to device (and back

again)
• Kernel executes on multiple threads
- can get a thread identifier

• Limited ability to synchronise between threads
- barrier only inside a “workgroup”
- atomics

• Can specify orderings between kernels

19

Hello World
__kernel void hello(__global char* string)
{
string[0] = 'H';
string[1] = 'e';
string[2] = 'l';
string[3] = 'l';
string[4] = 'o';
string[5] = ',';
string[6] = ' ';
string[7] = 'W';
string[8] = 'o';
string[9] = 'r';
string[10] = 'l';
string[11] = 'd';
string[12] = '!';
string[13] = '\0';
}

20

#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>

#define MEM_SIZE (128)
#define MAX_SOURCE_SIZE (0x100000)

int main()
{
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue command_queue = NULL;
cl_mem memobj = NULL;

cl_program program = NULL;

cl_kernel kernel = NULL;

cl_platform_id platform_id = NULL;

cl_uint ret_num_devices;

cl_uint ret_num_platforms;

cl_int ret;

char string[MEM_SIZE];

FILE *fp;

char fileName[] = "./hello.cl";

char *source_str;

size_t source_size;

21

/* Load the source code containing

the kernel*/

fp = fopen(fileName, "r");

if (!fp) {

fprintf(stderr, "Failed to load

kernel.\n");

exit(1);

}

source_str =
(char*)malloc(MAX_SOURCE_SIZE);

source_size = fread(source_str, 1,

MAX_SOURCE_SIZE, fp);

fclose(fp);

/* Get Platform and Device Info */

ret = clGetPlatformIDs(1,

&platform_id, &ret_num_platforms);

ret = clGetDeviceIDs(platform_id,

CL_DEVICE_TYPE_DEFAULT, 1, &device_id,
&ret_num_devices);

/* Create OpenCL context */

context = clCreateContext(NULL, 1,
&device_id, NULL, NULL, &ret);

/* Create Command Queue */

command_queue =

clCreateCommandQueue(context,
device_id, 0, &ret);

/* Create Memory Buffer */

memobj = clCreateBuffer(context,
CL_MEM_READ_WRITE,MEM_SIZE *
sizeof(char), NULL, &ret);

/* Create Kernel Program from the
source */

program =
clCreateProgramWithSource(context, 1,

(const char **)&source_str,

(const size_t *)&source_size, &ret);

22

/* Build Kernel Program */

ret = clBuildProgram(program, 1,
&device_id, NULL, NULL, NULL);

/* Create OpenCL Kernel */

kernel = clCreateKernel(program,

"hello", &ret);

/* Set OpenCL Kernel Parameters */

ret = clSetKernelArg(kernel, 0,

sizeof(cl_mem), (void *)&memobj);

/* Execute OpenCL Kernel */

ret = clEnqueueTask(command_queue,

kernel, 0, NULL,NULL);

/* Copy results from the memory buffer
*/

ret =
clEnqueueReadBuffer(command_queue,
memobj, CL_TRUE, 0,

MEM_SIZE * sizeof(char),string, 0,
NULL, NULL);

/* Display Result */

puts(string);

/* Finalization */

ret = clFlush(command_queue);

ret = clFinish(command_queue);

ret = clReleaseKernel(kernel);

ret = clReleaseProgram(program);

ret = clReleaseMemObject(memobj);

ret =
clReleaseCommandQueue(command_queue);

ret = clReleaseContext(context);

free(source_str);

return 0;

}

23

Java threads
• Built in to the Java language specification
- highly portable

• Threads are Java objects
- created by calling a constructor

• Synchronisation
- synchronised blocks and methods

• act as a critical region
• specify an object to synchronise on
• every object has an associated lock

- also explicit locks, atomic classes, barriers, semaphores, wait/notify

24

Hello World
class Example {

public static void main(String args[]){
Thread thread_object [] = new Thread[nthread];
for(int i=0; i<nthread; i++){
thread_object[i] = new Thread(new MyClass(i));
thread_object[i].start();

}
for(int i=0; i<nthread; i++){
try{
thread_object[i].join();

}catch (InterruptedException x){}
}

}
}

25

Hello World (cont.)
class MyClass implements Runnable {

int id;

public MyClass(int id) {
this.id = id;

}

public void run() {
System.out.println("Hello World from Thread” + id);

}
}

26

Java Tasks
• Create an Executor Service with a pool of threads
ExecutorService ex = Executors.newFixedThreadPool(nthreads);

• Submitting tasks
- Submit method submits a task for execution and returns a Future representing

that task

Future ft = ex.submit(new Myclass(i));

- Future
• Represents the status and result of an asynchronous computation
• Provides methods to check if computation is complete, to wait for completion

and, if appropriate, retrieve the result of the computation

27

