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MPI Datatypes 

• Basic types 

• Derived types 

- vectors 

- structs 

- others 
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Basic datatypes 

5 

int x[10]; 

INTEGER:: x(10); 

// send all 10 values 

MPI_Send(x, 10, MPI_INT, …); 

MPI_SEND(x, 10, MPI_INTEGER, …) 

MPI_Send(&x[0], 4, …); 

MPI_SEND( x(1), 4, …) 

// send first 4 values 

MPI_SEND( x(5), 4, …) 

MPI_Send(&x[4], 4, …); 

// send 5th, 6th, 7th, 8th 

struct mystruct x[10]; 

type(mytype) :: x(10) 

// ?? 



Motivation 

• Send / Recv calls need a datatype argument 

- pre-defined values exist for pre-defined language types 

- e.g.  real <-> MPI_REAL;   int <-> MPI_INT 

 

• What about types defined by a program? 

- e.g. structures (in C) or user-defined types (Fortran) 

 

• Send / Recv calls take a count parameter 

- what about data that isn’t contiguous in memory? 

- e.g. subsections of 2D arrays 
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Approach 

• Can define new types in MPI 

- user calls setup routines to describe new data type to MPI 

• remember, MPI is a library and NOT a compiler! 

- MPI returns a new data type handle 

- store this value in a variable, e.g. MPI_MY_NEWTYPE 

 

• Derived types have same status as pre-defined 

- can use in any message-passing call 

 

• Some care needed for reduction operations 

- user must also define a new MPI_Op appropriate to the new data 

type to tell MPI how to combine them 
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Defining types 

• All derived types stored by MPI as a list of basic types and 

displacements (in bytes) 

- for a structure, types may be different 

- for an array subsection, types will be the same 

 

• User can define new derived types in terms of both basic 

types and other derived types 
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Derived Data types - Type 

basic datatype 0 displacement of datatype 0 

basic datatype 1 displacement of datatype 1 

... ... 

basic datatype n-1 displacement of datatype n-1 
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Contiguous Data 
• The simplest derived datatype consists of a number of 

contiguous items of the same datatype. 

• C: 
     int MPI_Type_contiguous( int count,  

                   MPI_Datatype oldtype, 

                   MPI_Datatype *newtype) 

 

• Fortran: 
     MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE,    

                         NEWTYPE, IERROR) 

 

     INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR 
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Use of contiguous 

• May make program clearer to read 

• Imagine sending a block of 4 integers 
- use MPI_Ssend with MPI_INT / MPI_INTEGER and count = 4 

 

• Or … 
- define a new contiguous type of 4 integers called BLOCK4 

- use MPI_Ssend with type=BLOCK4 and count = 1 

 

• May also be useful intermediate stage in building more 
complicated types 
- i.e. later used in definition of another derived type 
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Vector Datatype Example 

• count = 2 

• stride = 5 

• blocklength = 3 
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Oldtype 

Newtype 

3 elements per block 

5 element stride 

between blocks 

2 blocks 



What is a vector type? 

• Why is a pattern with blocks and gaps useful? 

 

A vector type corresponds to a 

subsection of a 2D array 
 

•  Think about how arrays are stored in memory 

- unfortunately, different conventions for C and Fortran! 

- must use statically allocated arrays in C because dynamically 
allocated arrays (using malloc) have no defined storage format 

- In Fortran, can use either static or allocatable arrays 
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Coordinate System (how I draw arrays) 
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Arrray Layout in Memory 

• Data is contiguous in memory 

- different conventions for mapping 2D to 1D arrays in C and Fortran 
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Memory Layout 
• You can choose to draw arrays however you like – how 

you draw them does not change reality! 

 
 

 

 

 

- Regardless of how you draw them, the layout in memory is: 

• x[i][j] is followed by x[i][j+1] (in C) 

• x(i,j)  is followed by x(i+1,j)  (in Fortran) 
 

• if you create arrays with malloc in C/C++ things are more complicated ... 
 

- Depending on how you draw them, this can appear “row major” or 

“column major” 
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First index i Second index j Format 

right up coordinates 

down right matrix 

right down graphics (scan lines) 



C example 

• A 3 x 2 subsection of a 5 x 4 array 

- three blocks of two elements separated by gaps of two 
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C: x[5][4] 



Fortran example 

• A 3 x 2 subsection of a 5 x 4 array 

- two blocks of three elements separated by gaps of two 
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F: x(5,4) 



stride = 4 

blocklength = 2 

count = 3 

stride = 5 

blocklength = 3 

count = 2 

Equivalent Vector Datatypes 
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Constructing a Vector Datatype 

• C: 

 int MPI_Type_vector (int count,  

   int blocklength, int stride, 

   MPI_Datatype oldtype,  

   MPI_Datatype *newtype) 

 

• Fortran: 

  MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH,  

   STRIDE, OLDTYPE, NEWTYPE, IERROR) 
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Sending a vector 

• Have defined a 3x2 subsection of a 5x4 array 

- but not defined WHICH subsection 

- is it the bottom left-hand corner? top-right? 

 

• Data that is sent depends on what buffer you pass to the 

send routines 

- pass the address of the first element that should be sent 
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Vectors in send routines 
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MPI_Ssend(&x[1][1], 1, vector3x2, ...); 

MPI_SSEND(x(2,2)  , 1, vector3x2, ...) 

MPI_Ssend(&x[2][1], 1, vector3x2, ...); 

MPI_SSEND(x(3,2)  , 1, vector3x2, ...) 



Extent of a Datatatype 

• May be useful to find out how big a derived type is 
- extent is distance from start of first to end of last data entry 

- can use these routines to compute extents of basic types too 

- answer is returned in bytes 

 

• C: 

   int MPI_Type_get_extent (MPI_Datatype datatype, 

               MPI_Aint *extent) 

 

• Fortran: 
  MPI_TYPE_GET_EXTENT( DATATYPE, EXTENT, IERROR) 

  INTEGER DATATYPE, EXTENT, IERROR  
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Structures 
• Can define compound objects in C and Fortran 

 

 

 

 

 

 

• Storage format NOT defined by the language 

- different compilers do different things 

- e.g. insert arbitrary padding between successive elements 

- need to tell MPI the byte displacements of every element 
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struct compound { 

  int    ival; 

  double dval[3]; 

}; 

type compound 

  integer          :: ival 

  double precision :: dval(3) 

end type compound 



Constructing a Struct Datatype 
• C: 

 int MPI_Type_create_struct (int count,  

  int *array_of_blocklengths, 

  MPI_Aint *array_of_displacements, 

    MPI_Datatype *array_of_types,  

      MPI_Datatype *newtype) 

 

• Fortran: 

 MPI_TYPE_CREATE_STRUCT (COUNT,  

  ARRAY_OF_BLOCKLENGTHS,  

      ARRAY_OF_DISPLACEMENTS, 

      ARRAY_OF_TYPES, NEWTYPE, IERROR) 
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Struct Datatype Example 

• count = 2 

• array_of_blocklengths[0] = 1 

• array_of_types[0] = MPI_INT 

• array_of_blocklengths[1] = 3 

• array_of_types[1] = MPI_DOUBLE 

 

• But how do we compute the displacements? 
- need to create a compound variable in our program 

- explicitly compute memory addresses of every member 

- subtract addresses to get displacements from origin 
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Address of a Variable 

• C: 

 int MPI_Get_address (void *location,   

    MPI_Aint *address); 

 

 

• Fortran: 

 MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR) 

    

 <type> LOCATION (*) 

 INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS 

 INTEGER IERROR  
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Committing a datatype 

• Once a datatype has been constructed, it needs to be 

committed before it is used in a message-passing call 

• This is done using MPI_TYPE_COMMIT 

 

• C:  

 int MPI_Type_commit (MPI_Datatype *datatype) 

 

• Fortran: 

 MPI_TYPE_COMMIT (DATATYPE, IERROR) 

 INTEGER DATATYPE, IERROR 
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Exercise 

Derived Datatypes 

 

• See Exercise 7.1 on the sheet 

• Modify the passing-around-a-ring exercise. 

• Calculate two separate sums: 
- rank integer sum, as before 

- rank floating point sum 

• Use a struct datatype for this. 

• If you are a Fortran programmer unfamiliar with Fortran 
derived types then jump to exercise 7.2 
- illustrates the use of MPI_Type_vector 
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