
Derived Datatypes

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

MPI Datatypes

• Basic types

• Derived types

- vectors

- structs

- others

4

Basic datatypes

5

int x[10];

INTEGER:: x(10);

// send all 10 values

MPI_Send(x, 10, MPI_INT, …);

MPI_SEND(x, 10, MPI_INTEGER, …)

MPI_Send(&x[0], 4, …);

MPI_SEND(x(1), 4, …)

// send first 4 values

MPI_SEND(x(5), 4, …)

MPI_Send(&x[4], 4, …);

// send 5th, 6th, 7th, 8th

struct mystruct x[10];

type(mytype) :: x(10)

// ??

Motivation

• Send / Recv calls need a datatype argument

- pre-defined values exist for pre-defined language types

- e.g. real <-> MPI_REAL; int <-> MPI_INT

• What about types defined by a program?

- e.g. structures (in C) or user-defined types (Fortran)

• Send / Recv calls take a count parameter

- what about data that isn’t contiguous in memory?

- e.g. subsections of 2D arrays

6

Approach

• Can define new types in MPI

- user calls setup routines to describe new data type to MPI

• remember, MPI is a library and NOT a compiler!

- MPI returns a new data type handle

- store this value in a variable, e.g. MPI_MY_NEWTYPE

• Derived types have same status as pre-defined

- can use in any message-passing call

• Some care needed for reduction operations

- user must also define a new MPI_Op appropriate to the new data

type to tell MPI how to combine them

 7

Defining types

• All derived types stored by MPI as a list of basic types and

displacements (in bytes)

- for a structure, types may be different

- for an array subsection, types will be the same

• User can define new derived types in terms of both basic

types and other derived types

8

Derived Data types - Type

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

9

Contiguous Data
• The simplest derived datatype consists of a number of

contiguous items of the same datatype.

• C:
 int MPI_Type_contiguous(int count,

 MPI_Datatype oldtype,

 MPI_Datatype *newtype)

• Fortran:
 MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE,

 NEWTYPE, IERROR)

 INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

10

Use of contiguous

• May make program clearer to read

• Imagine sending a block of 4 integers
- use MPI_Ssend with MPI_INT / MPI_INTEGER and count = 4

• Or …
- define a new contiguous type of 4 integers called BLOCK4

- use MPI_Ssend with type=BLOCK4 and count = 1

• May also be useful intermediate stage in building more
complicated types
- i.e. later used in definition of another derived type

11

Vector Datatype Example

• count = 2

• stride = 5

• blocklength = 3

12

Oldtype

Newtype

3 elements per block

5 element stride

between blocks

2 blocks

What is a vector type?

• Why is a pattern with blocks and gaps useful?

A vector type corresponds to a

subsection of a 2D array

• Think about how arrays are stored in memory

- unfortunately, different conventions for C and Fortran!

- must use statically allocated arrays in C because dynamically
allocated arrays (using malloc) have no defined storage format

- In Fortran, can use either static or allocatable arrays

13

Coordinate System (how I draw arrays)

14

x[i][j]

x(i,j)

x[0][3]

x[0][2]

x[0][1]

x[0][0]

i

j

x[1][3]

x[1][2]

x[1][1]

x[1][0]

x[2][3]

x[2][2]

x[2][1]

x[2][0]

x[3][3]

x[3][2]

x[3][1]

x[3][0]

x(1,4)

x(1,1)

x(1,3)

x(1,2)

x(2,4)

x(2,1)

x(2,3)

x(2,2)

x(3,4)

x(3,1)

x(3,3)

x(3,2)

x(4,4)

x(4,1)

x(4,3)

x(4,2)

Arrray Layout in Memory

• Data is contiguous in memory

- different conventions for mapping 2D to 1D arrays in C and Fortran

15

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

9 3

C: x[4][4] F: x(4,4)

1 5 13 2 6 10 14 3 7 11 15 4 8 12 16 9

C: x[16] F: x(16)

i

j

Memory Layout
• You can choose to draw arrays however you like – how

you draw them does not change reality!

- Regardless of how you draw them, the layout in memory is:

• x[i][j] is followed by x[i][j+1] (in C)

• x(i,j) is followed by x(i+1,j) (in Fortran)

• if you create arrays with malloc in C/C++ things are more complicated ...

- Depending on how you draw them, this can appear “row major” or

“column major”

16

First index i Second index j Format

right up coordinates

down right matrix

right down graphics (scan lines)

C example

• A 3 x 2 subsection of a 5 x 4 array

- three blocks of two elements separated by gaps of two

17

C: x[5][4]

Fortran example

• A 3 x 2 subsection of a 5 x 4 array

- two blocks of three elements separated by gaps of two

18

F: x(5,4)

stride = 4

blocklength = 2

count = 3

stride = 5

blocklength = 3

count = 2

Equivalent Vector Datatypes

19

Constructing a Vector Datatype

• C:

 int MPI_Type_vector (int count,

 int blocklength, int stride,

 MPI_Datatype oldtype,

 MPI_Datatype *newtype)

• Fortran:

 MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH,

 STRIDE, OLDTYPE, NEWTYPE, IERROR)

20

Sending a vector

• Have defined a 3x2 subsection of a 5x4 array

- but not defined WHICH subsection

- is it the bottom left-hand corner? top-right?

• Data that is sent depends on what buffer you pass to the

send routines

- pass the address of the first element that should be sent

21

Vectors in send routines

22

MPI_Ssend(&x[1][1], 1, vector3x2, ...);

MPI_SSEND(x(2,2) , 1, vector3x2, ...)

MPI_Ssend(&x[2][1], 1, vector3x2, ...);

MPI_SSEND(x(3,2) , 1, vector3x2, ...)

Extent of a Datatatype

• May be useful to find out how big a derived type is
- extent is distance from start of first to end of last data entry

- can use these routines to compute extents of basic types too

- answer is returned in bytes

• C:

 int MPI_Type_get_extent (MPI_Datatype datatype,

 MPI_Aint *extent)

• Fortran:
 MPI_TYPE_GET_EXTENT(DATATYPE, EXTENT, IERROR)

 INTEGER DATATYPE, EXTENT, IERROR

23

Structures
• Can define compound objects in C and Fortran

• Storage format NOT defined by the language

- different compilers do different things

- e.g. insert arbitrary padding between successive elements

- need to tell MPI the byte displacements of every element

24

struct compound {

 int ival;

 double dval[3];

};

type compound

 integer :: ival

 double precision :: dval(3)

end type compound

Constructing a Struct Datatype
• C:

 int MPI_Type_create_struct (int count,

 int *array_of_blocklengths,

 MPI_Aint *array_of_displacements,

 MPI_Datatype *array_of_types,

 MPI_Datatype *newtype)

• Fortran:

 MPI_TYPE_CREATE_STRUCT (COUNT,

 ARRAY_OF_BLOCKLENGTHS,

 ARRAY_OF_DISPLACEMENTS,

 ARRAY_OF_TYPES, NEWTYPE, IERROR)

25

Struct Datatype Example

• count = 2

• array_of_blocklengths[0] = 1

• array_of_types[0] = MPI_INT

• array_of_blocklengths[1] = 3

• array_of_types[1] = MPI_DOUBLE

• But how do we compute the displacements?
- need to create a compound variable in our program

- explicitly compute memory addresses of every member

- subtract addresses to get displacements from origin

26

Address of a Variable

• C:

 int MPI_Get_address (void *location,

 MPI_Aint *address);

• Fortran:

 MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

 <type> LOCATION (*)

 INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

 INTEGER IERROR

27

Committing a datatype

• Once a datatype has been constructed, it needs to be

committed before it is used in a message-passing call

• This is done using MPI_TYPE_COMMIT

• C:

 int MPI_Type_commit (MPI_Datatype *datatype)

• Fortran:

 MPI_TYPE_COMMIT (DATATYPE, IERROR)

 INTEGER DATATYPE, IERROR

28

Exercise

Derived Datatypes

• See Exercise 7.1 on the sheet

• Modify the passing-around-a-ring exercise.

• Calculate two separate sums:
- rank integer sum, as before

- rank floating point sum

• Use a struct datatype for this.

• If you are a Fortran programmer unfamiliar with Fortran
derived types then jump to exercise 7.2
- illustrates the use of MPI_Type_vector

29

