
Introduction to OpenMP
Lecture 1: Shared Memory Concepts

Overview

• Shared memory systems

• Basic Concepts in Threaded Programming

Shared memory systems

• Threaded programming is most often used on shared memory parallel
computers.

• A shared memory computer consists of a number of processing units
(CPUs) together with some memory

• Key feature of shared memory systems is a single address space
across the whole memory system.

• every CPU can read and write all memory locations in the system

• one logical memory space

• all CPUs refer to a memory location using the same address

Conceptual model

P P PP P P

Interconnect

Memory

Real hardware

• Real shared memory hardware is more complicated than

this…..

• Memory may be split into multiple smaller units

• There may be multiple levels of cache memory

• some of these levels may be shared between subsets of processors

• The interconnect may have a more complex topology

• ….but a single address space is still supported

• Hardware complexity can affect performance of programs, but not their

correctness

Real hardware example

Memory

P P

L1 L1

L2

P P

L1 L1

L2

Memory

Threaded Programming Model
• The programming model for shared memory is based on the notion

of threads
• threads are like processes, except that threads can share memory with each

other (as well as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control through the

same program
• each thread has its own program counter

• Usually run one thread per CPU/core
• but could be more

• can have hardware support for multiple threads per core

Threads (cont.)

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

Thread communication

• In order to have useful parallel programs, threads must be

able to exchange data with each other

• Threads communicate with each via reading and writing

shared data

• thread 1 writes a value to a shared variable A

• thread 2 can then read the value from A

• Note: there is no notion of messages in this model

Thread Communication
Thread 1 Thread 2
mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Synchronisation
• By default, threads execute asynchronously

• Each thread proceeds through program instructions independently of other
threads

• This means we need to ensure that actions on shared variables occur in

the correct order: e.g.

thread 1 must write variable A before thread 2 reads it,

or

thread 1 must read variable A before thread 2 writes it.

• Note that updates to shared variables (e.g. a = a + 1) are not atomic!
• If two threads try to do this at the same time, one of the updates may get

overwritten.

Synchronisation example
Thread 1 Thread 2
load a

Program

CPU

Registers

Memory

10

10

1011 11

1111

add a 1

store a

load a

add a 1

store a

Tasks
• A task is a piece of computation which can be executed

independently of other tasks

• In principle we could create a new thread to execute every

task
• in practise this can be too expensive, especially if we have large numbers

of small tasks

• Instead tasks can be executed by a pre-exisiting pool of

threads
• tasks are submitted to the pool
• some thread in the pool executes the task

• at some point in the future the task is guaranteed to have completed

• Tasks may or may not be ordered with respect to other tasks

Parallel loops
• Loops are the main source of parallelism in many applications.

• If the iterations of a loop are independent (can be done in any order) then
we can share out the iterations between different threads.

• e.g. if we have two threads and the loop

for (i=0; i<100; i++){

a[i] += b[i];

}

we could do iteration 0-49 on one thread and iterations 50-99 on the
other.

• Can think of an iteration, or a set of iterations, as a task.

Reductions
• A reduction produces a single value from associative operations

such as addition, multiplication, max, min, and, or.

• For example:

b = 0;

for (i=0; i<n; i++)

b += a[i];

• Allowing only one thread at a time to update b would remove all

parallelism.

• Instead, each thread can accumulate its own private copy, then
these copies are reduced to give final result.

• If the number of operations is much larger than the number of
threads, most of the operations can proceed in parallel

