
Parallel design patterns 

ARCHER course
Case study: The actor model for ATC



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


The problem



Use the actor pattern to model this via 

MPI
• Four types of actor

- Air traffic control tower

- Runway

- Airspace (the operator introducing/handing aircraft to the ATC 

tower) 

- Aircraft

• Control tower, runway and airspace are created once at 

model start up and exist till the end

• Aircraft are much more dynamic, created as the model 

runs and many actors can be created (and can die)



Interaction pattern

Airspace

Aircraft

Control 

Tower
Runway

Request permission to 

hand over the aircraft
Grant or refuse

Create actor 

if granted

Landed safely

Request 

landing 

permission
Grant or refuse

Continue to request 

landing while 

refused
Grant or refuse

Aircraft landing

Landed

Periodically request 

statistics
Send statistics 

back to airspace



Some hints

• A skeleton implementation is included

- Use it if you want, entirely up to you

- Worked solutions are also available too

• I strongly suggest one actor per UE as much simpler to do

• I also provide the process pool implementation where 

workers are actors 

• Lots of details in the hand out

UE

Actor

UE

Actor

UE

Actor

UE

Actor

UE

Actor



ProcessPool: Important Considerations

• Your code must call MPI_Init before any of the following 

calls

• Every process must call processPoolInit

• The master process keeps track of which processes are 
active, but any process can call startWorkerProcess

to request that a new worker is created/awoken. An ID is 

returned by this call which can be used to send a 

message to the new process.

- The communications between the master and worker required to 

make this happen occur “behind the scenes”



ProcessPool: Important Considerations

• The master process will probably do the job of creating 

the initial actors in the simulation

• All actors should be implemented using workers

while (workerStatus) {

int parentId = getCommandData();

// insert code here which implements being an actor

workerStatus=workerSleep();     // This MPI process will 

sleep, further workers may be run on this process now                                

}



ProcessPool: Important Considerations

• All actors must call shouldWorkerStop at regular 

intervals to allow the master to terminate the program if 
required. If shouldWorkerStop returns true, then it is 

your responsibility to ensure that the flow of control 
returns to the line after the call to workerCode

• The process pool uses MPI tags 16384 & 

16383

- So avoid using these tags in your code


