
Parallel Design 

Patterns

Geometric Decomposition



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US


• A problem domain can often be 

subdivided (or partitioned) into 

many smaller spaces that can 

be operated on concurrently.

- How can an algorithm be 

organised so as to exploit this 

potential parallelism?

Geometric Decomposition – Problem

3

• This is very common in computer simulation where you’re 
simulating what goes on in time and space.

- Operate on different parts of space concurrently

- Also known as domain decomposition and as coarse-grained data 

parallelism.

Courtesy of Another Fine Mesh, Pointwise



Geometric Decomposition - Context

• The algorithm will probably involve one key data structure 

whose elements can be operated on concurrently.

- Typically, the data structure is an array, but it could also be a graph.

- Data structures with inherent hierarchy (e.g., trees) are often better 

dealt with by the recursive data pattern.

• Operations on an element usually involve the element 

itself and some neighbouring elements.

- “...domain decomposition methods solve a boundary value problem by 

splitting it into smaller boundary value problems on subdomains and 

iterating to coordinate the solution between adjacent subdomains.” 
http://en.wikipedia.org/wiki/Domain_decomposition_methods

4

http://en.wikipedia.org/wiki/Domain_decomposition_methods


Some more examples

5

Vincent, Plata, Hunt, et al., 

Journal of the Royal Society Interface, 2011



Some more examples

6

Courtesy of Michael Duda and Bill Skamarock,

National Centre for Atmospheric Research (NCAR), US



Some more examples

7

Nelson, Genel, Pillepich et al., 

Monthly Notices of the Royal Astronomical Society, 2015

y [kpc]

x [kpc]

z = 2 kpc



Geometric Decomposition - Forces

• How do we define subdomains and assign these to units 

of execution (UEs)?

• We need to consider the usual qualities,…

- efficiency, simplicity, portability and scalability

- and load balancing too.

• We need to ensure that data is available to perform the 

operation on the subdomain.

• All decomposition approaches introduce parallelisation

overheads.

8



Geometric Decomposition – Solution

• Data decomposition

- How to split up the domain into subdomains.

• Exchange operation

- How neighbouring subdomains influence each other.

• Update operation

- Computational work

• Task scheduling

• Program structure

9



Data Decomposition

• How do we decompose the domain?

- Do we decompose in all dimensions?

- Subdomain shapes can be structured (regular connectivity) or 

unstructured.

• How do we read the data?

- Does the format mirror domain decomposition?

- Is initial state read by one UE and then broadcast?

- Or is data read in parallel?

• Will the workload (data per UE) be balanced?

• Efficiency depends on the granularity of data decomposition.

- the balance between communication and computation

10



Granularity

• How much work should we assign to each UE?

• The finer the mesh the greater the communication required.

• Splitting a problem has time cost, but this can be recouped 

through parallelism

11

Coarse-grained Fine-grained



Granularity

12

compute dominates comms dominate

• Usually optimum granularity can only be determine 

experimentally

- depends on problem size and target architecture (especially the 

relative strengths of processing and communications network)

- granularity can be fixed during compilation or at runtime



The Exchange Interaction: Halo Swapping

• Sub-domains need to know who their neighbours are in 

order to exchange data

• Non-local data must be present before work can begin.

• Common approach is to use halo-swapping.

- a.k.a. ghost or shadow boundaries

13

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 1613 14 15

1 2 3 4 5 6 7 85 4 9 9 10 11 12 13 14 15 168 13 12



2D Geometric Decomposition

• For each time step...

- update halos

- perform calculation

• Improve efficiency...

- group together the comms

associated with swapping 

each side of a halo

14



2D Geometric Decomposition

15

• All decomposition approaches 

introduce overheads...

– transferring data on the 

boundaries

– synchronisation

– calculating global quantities

– volume gives us computation, 

surface area communication



Example matching halos to elements

16

AC
BD

AC
BD

AC
BD

AC
BD

• If halos swapped after every time step synchronisation needed.

• Depth of stencil is number of boundary elements required in 

each direction.



The update (computation) operation

• For each time step complete the exchange before starting 

calculating the update.

• Better performance can be obtained by overlapping 

communication and computation.

- multithreading within a task

- non-blocking MPI communications

• Need to ensure that the correct neighbour data has been 

received before performing the update operation.

17



Overlapping compute and communication

18

1 for (k=0; k<MAX_ITERATIONS; k++) {

2 // initiate non-blocking halo swaps

3 [...]

4 // block for all communications to complete

5 [...]

6 for (i=1; i<=NX; i++) {

7 rnorm = rnorm + pow(u_k[i]*2-u_k[i-1]-u_k[i+1], 2);

8 }

9 [...]

10 }



Overlapping compute and communication

19

1 for (k=0; k<MAX_ITERATIONS; k++) {

2 // initiate non-blocking halo swaps

3 [...]

4 for (i=2; i<=NX-1; i++) {

5 rnorm = rnorm + pow(u_k[i]*2-u_k[i-1]-u_k[i+1], 2);

6 }

7 // block for all communications to complete

8 [...]

9 rnorm = rnorm + pow(u_k[1]*2-u_k[0]-u_k[2], 2);

10 rnorm = rnorm + pow(u_k[NX]*2-u_k[NX-1]-u_k[NX+1], 2);

11 [...]

12 }



Task Scheduling

• One task is the update of one 

sub-domain.

• Tasks need to be mapped to UEs.

- one per UE is the simplest case

- several sub-domains per UE

• may improve load balance

• harder to synchronise 

• need to choose method of assignment, 

e.g., linear, cyclical or random

20



Program Structure

• Geometric Decomposition can be used with one 

of the following.

- Loop Parallelism

• an iteration of the loop corresponds to an update of one 

sub-domain in the system

• maps well onto OpenMP

- SPMD

• one process per sub-domain

• exchange operation corresponds to communication 

between processes

• maps well onto MPI

21



Met Office NAME example

• Numerical Atmospheric Modelling Environment

- dispersion of particles such as volcanic ash, chemicals and pollutants

- code is serial and simulations take days to run

- parallelise code such that simulations can complete within hours

22

Eyjafjallajökull Volcano Plume

Courtesy of Boaworm

Wikimedia Commons, 2010



Met Office NAME example

• There are three computational steps.

- update position

- update velocities using averaged values for wind speed or temperature

- particle properties can also be altered via chemical reactions

• requires knowledge of neighbours

23

• 1D array of particles, where each particle is associated with a 

set of properties.

- e.g., mass, size, position, velocity



Two choices for parallelism (1D)

cons
• a particle’s neighbours may be distributed 

across all UEs, which maximises 

communication required to determine 

impact of chemical reactions

UE 0
UE 1

UE 2
UE 3

24

pros
• simple 1D decomposition of particle array

• work is evenly balance balanced across 

UEs for first two computational steps 

(x,y,z and v)



Two choices for parallelism (2D)

25

UE0 UE1

UE2 UE3

pros
• minimised communications required 

for chemical reactions has many such 

calculations will be between particles 

within the same domain

cons
• non-uniform particle distribution would 

cause load imbalance
- could be remedied by irregular decomposition but 

this adds complexity

• particles have to be transferred to 

between UEs



Choose 1D decomposition

• Particle array is partitioned irrespective of geographical location.

- straightforward to code

- load balancing is included by default

- chemical interactions could be computed using reductions

• every particle receives an input from each UE that is calculated from all chemical 

interactions of neighbouring particles

• reductions are implemented efficiently on modern machines

26

UE 0

UE 1

UE 2

UE 3



Conclusion

• Geometric decomposition is a very common pattern.

• A number of choices (such as UE assignment, task 

scheduling etc) need to be made during implementation 

in order to tune for performance and scalability.

• If you’re simulating a physical system where most (if not 

all) interactions are local then a geometric decomposition 

is usually the best strategy.

- also maps closely on to problems modelled as (discretised) 

differential equations

27


