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• A problem domain can often be 

subdivided (or partitioned) into 

many smaller spaces that can 

be operated on concurrently.

- How can an algorithm be 

organised so as to exploit this 

potential parallelism?

Geometric Decomposition – Problem
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• This is very common in computer simulation where you’re 
simulating what goes on in time and space.

- Operate on different parts of space concurrently

- Also known as domain decomposition and as coarse-grained data 

parallelism.

Courtesy of Another Fine Mesh, Pointwise



Geometric Decomposition - Context

• The algorithm will probably involve one key data structure 

whose elements can be operated on concurrently.

- Typically, the data structure is an array, but it could also be a graph.

- Data structures with inherent hierarchy (e.g., trees) are often better 

dealt with by the recursive data pattern.

• Operations on an element usually involve the element 

itself and some neighbouring elements.

- “...domain decomposition methods solve a boundary value problem by 

splitting it into smaller boundary value problems on subdomains and 

iterating to coordinate the solution between adjacent subdomains.” 
http://en.wikipedia.org/wiki/Domain_decomposition_methods
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Some more examples
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Vincent, Plata, Hunt, et al., 

Journal of the Royal Society Interface, 2011



Some more examples
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Courtesy of Michael Duda and Bill Skamarock,

National Centre for Atmospheric Research (NCAR), US



Some more examples
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Nelson, Genel, Pillepich et al., 

Monthly Notices of the Royal Astronomical Society, 2015
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Geometric Decomposition - Forces

• How do we define subdomains and assign these to units 

of execution (UEs)?

• We need to consider the usual qualities,…

- efficiency, simplicity, portability and scalability

- and load balancing too.

• We need to ensure that data is available to perform the 

operation on the subdomain.

• All decomposition approaches introduce parallelisation

overheads.
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Geometric Decomposition – Solution

• Data decomposition

- How to split up the domain into subdomains.

• Exchange operation

- How neighbouring subdomains influence each other.

• Update operation

- Computational work

• Task scheduling

• Program structure
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Data Decomposition

• How do we decompose the domain?

- Do we decompose in all dimensions?

- Subdomain shapes can be structured (regular connectivity) or 

unstructured.

• How do we read the data?

- Does the format mirror domain decomposition?

- Is initial state read by one UE and then broadcast?

- Or is data read in parallel?

• Will the workload (data per UE) be balanced?

• Efficiency depends on the granularity of data decomposition.

- the balance between communication and computation
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Granularity

• How much work should we assign to each UE?

• The finer the mesh the greater the communication required.

• Splitting a problem has time cost, but this can be recouped 

through parallelism
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Coarse-grained Fine-grained



Granularity
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compute dominates comms dominate

• Usually optimum granularity can only be determine 

experimentally

- depends on problem size and target architecture (especially the 

relative strengths of processing and communications network)

- granularity can be fixed during compilation or at runtime



The Exchange Interaction: Halo Swapping

• Sub-domains need to know who their neighbours are in 

order to exchange data

• Non-local data must be present before work can begin.

• Common approach is to use halo-swapping.

- a.k.a. ghost or shadow boundaries
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2D Geometric Decomposition

• For each time step...

- update halos

- perform calculation

• Improve efficiency...

- group together the comms

associated with swapping 

each side of a halo
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2D Geometric Decomposition
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• All decomposition approaches 

introduce overheads...

– transferring data on the 

boundaries

– synchronisation

– calculating global quantities

– volume gives us computation, 

surface area communication



Example matching halos to elements
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• If halos swapped after every time step synchronisation needed.

• Depth of stencil is number of boundary elements required in 

each direction.



The update (computation) operation

• For each time step complete the exchange before starting 

calculating the update.

• Better performance can be obtained by overlapping 

communication and computation.

- multithreading within a task

- non-blocking MPI communications

• Need to ensure that the correct neighbour data has been 

received before performing the update operation.
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Overlapping compute and communication

18

1 for (k=0; k<MAX_ITERATIONS; k++) {

2 // initiate non-blocking halo swaps

3 [...]

4 // block for all communications to complete

5 [...]

6 for (i=1; i<=NX; i++) {

7 rnorm = rnorm + pow(u_k[i]*2-u_k[i-1]-u_k[i+1], 2);

8 }

9 [...]

10 }



Overlapping compute and communication
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1 for (k=0; k<MAX_ITERATIONS; k++) {

2 // initiate non-blocking halo swaps

3 [...]

4 for (i=2; i<=NX-1; i++) {

5 rnorm = rnorm + pow(u_k[i]*2-u_k[i-1]-u_k[i+1], 2);

6 }

7 // block for all communications to complete

8 [...]

9 rnorm = rnorm + pow(u_k[1]*2-u_k[0]-u_k[2], 2);

10 rnorm = rnorm + pow(u_k[NX]*2-u_k[NX-1]-u_k[NX+1], 2);

11 [...]

12 }



Task Scheduling

• One task is the update of one 

sub-domain.

• Tasks need to be mapped to UEs.

- one per UE is the simplest case

- several sub-domains per UE

• may improve load balance

• harder to synchronise 

• need to choose method of assignment, 

e.g., linear, cyclical or random
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Program Structure

• Geometric Decomposition can be used with one 

of the following.

- Loop Parallelism

• an iteration of the loop corresponds to an update of one 

sub-domain in the system

• maps well onto OpenMP

- SPMD

• one process per sub-domain

• exchange operation corresponds to communication 

between processes

• maps well onto MPI
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Met Office NAME example

• Numerical Atmospheric Modelling Environment

- dispersion of particles such as volcanic ash, chemicals and pollutants

- code is serial and simulations take days to run

- parallelise code such that simulations can complete within hours
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Eyjafjallajökull Volcano Plume

Courtesy of Boaworm

Wikimedia Commons, 2010



Met Office NAME example

• There are three computational steps.

- update position

- update velocities using averaged values for wind speed or temperature

- particle properties can also be altered via chemical reactions

• requires knowledge of neighbours
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• 1D array of particles, where each particle is associated with a 

set of properties.

- e.g., mass, size, position, velocity



Two choices for parallelism (1D)

cons
• a particle’s neighbours may be distributed 

across all UEs, which maximises 

communication required to determine 

impact of chemical reactions

UE 0
UE 1

UE 2
UE 3
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pros
• simple 1D decomposition of particle array

• work is evenly balance balanced across 

UEs for first two computational steps 

(x,y,z and v)



Two choices for parallelism (2D)
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UE0 UE1

UE2 UE3

pros
• minimised communications required 

for chemical reactions has many such 

calculations will be between particles 

within the same domain

cons
• non-uniform particle distribution would 

cause load imbalance
- could be remedied by irregular decomposition but 

this adds complexity

• particles have to be transferred to 

between UEs



Choose 1D decomposition

• Particle array is partitioned irrespective of geographical location.

- straightforward to code

- load balancing is included by default

- chemical interactions could be computed using reductions

• every particle receives an input from each UE that is calculated from all chemical 

interactions of neighbouring particles

• reductions are implemented efficiently on modern machines
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Conclusion

• Geometric decomposition is a very common pattern.

• A number of choices (such as UE assignment, task 

scheduling etc) need to be made during implementation 

in order to tune for performance and scalability.

• If you’re simulating a physical system where most (if not 

all) interactions are local then a geometric decomposition 

is usually the best strategy.

- also maps closely on to problems modelled as (discretised) 

differential equations
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