
Parallel Programming

Patterns
Overview and Concepts

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• Why parallel programming?

• Decomposition

- Geometric decomposition

- Task farm

- Pipeline

- Loop parallelism

• Performance metrics and scaling

- Amdahl’s law

- Gustafson’s law

3

Why use parallel programming?

It is harder than serial so why bother?

4

Why?

• Parallel programming is more difficult than its sequential

counterpart

• However we are reaching limitations in uniprocessor design

- Physical limitations to size and speed of a single chip

- Developing new processor technology is very expensive

- Some fundamental limits such as speed of light and size of atoms

• Parallelism is not a silver bullet

- There are many additional considerations

- Careful thought is required to take advantage of parallel machines

5

Performance

• A key aim is to solve problems faster

- To improve the time to solution

- Enable new scientific problems to be solved

• To exploit parallel computers, we need to split the program up
between different processors

• Ideally, would like program to run P times faster on P
processors

- Not all parts of program can be successfully split up

- Splitting the program up may introduce additional overheads such as
communication

6

Parallel tasks

• How we split a problem up in parallel is critical
1. Limit communication (especially the number of messages)

2. Balance the load so all processors are equally busy

• Tightly coupled problems require lots of interaction
between their parallel tasks

• Embarrassingly parallel problems require very little (or no)
interaction between their parallel tasks
- E.g. the image sharpening exercise

• In reality most problems sit somewhere between two
extremes

7

Decomposition

How do we split problems up to solve efficiently in parallel?

8

Decomposition

• One of the most challenging, but also most important,

decisions is how to split the problem up

• How you do this depends upon a number of factors

- The nature of the problem

- The amount of communication required

- Support from implementation technologies

• We are going to look at some frequently used

decompositions

- will be illustrated by later Fractal and CFD practical examples

9

Geometric decomposition

• Take advantage of the geometric properties of a problem

Image from ITWM: http://www.itwm.fraunhofer.de/en/departments/flow-and-

material-simulation/mechanics-of-materials/domain-decomposition-and-parallel-

mesh-generation.html

10

Geometric decomposition

• Splitting the problem up does have an associated cost

- Namely communication between processors

- Need to carefully consider granularity

- Aim to minimise communication and maximise computation

11

• Chunks too large

- too little parallelism

• Chunks too small

- communications rule

• Granularity

- size of chunks

of work

Halo swapping

• Swap data in bulk at pre-

defined intervals

• Often only need

information on the

boundaries

• Many small messages

result in far greater

overhead

12

Load imbalance
• Execution time determined by slowest processor

- each processor should have (roughly) the same amount of work, i.e.
they should be load balanced

• Assign multiple partitions per processor
- see Fractal example

- Additional techniques such as work stealing available

13

Task farm (master worker)

• Split the problem up into distinct, independent, tasks

• Master process sends task to a worker

• Worker process sends results back to the master

• The number of tasks is often much greater than the

number of workers and tasks get allocated to idle workers

Master

Worker 3 Worker 2 Worker 1 Worker n …

Fractal

14

Task farm considerations

• Communication is between the master and the workers
- Communication between the workers can complicate things

• The master process can become a bottleneck
- Workers are idle waiting for the master to send them a task or

acknowledge receipt of results

- Potential solution: implement work stealing

• Resilience – what happens if a worker stops responding?
- Master could maintain a list of tasks and redistribute that work’s

work

15

Pipelines

• A problem involves operating on many pieces of data in

turn. The overall calculation can be viewed as data

flowing through a sequence of stages and being operated

on at each stage.

• Each stage runs on a processor, each processor

communicates with the processor holding the next stage

• One way flow of data

S
ta

g
e

1

S
ta

g
e

2

S
ta

g
e

3

S
ta

g
e

4

S
ta

g
e

5

Data Result

16

Example: pipeline with 4 processors

• Each processor (one per colour) is responsible for a

different task or stage of the pipeline

• Each processor acts on data (numbered) as they move

through the pipeline

Data Result

1

2 1

3 2 1

4 3 2 1

17

Examples of pipelines

• CPU architectures
- Fetch, decode, execute, write back

- Intel Pentium 4 had a 20 stage pipeline

• Unix shell
- i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’

• Graphics/GPU pipeline

• A generalisation of pipeline (a workflow, or dataflow) is
becoming more and more relevant to large, distributed
scientific workflows

• Can combine the pipeline with other decompositions

18

Loop parallelism

• Serial programs can often be dominated by
computationally intensive loops.

• Can be applied incrementally, in small steps based upon
a working code
- This makes the decomposition very useful

- Often large restructuring of the code is not required

- e.g. compare different parallelisations for later CFD exercise

• Tends to work best with small scale parallelism
- Not suited to all architectures

- Not suited to all loops

• If the runtime is not dominated by loops, or some loops
can not be parallelised then these factors can dominate
(Amdahl’s law.)

19

Example of loop parallelism:

• If we ignore all parallelisation directives then should just

run in serial

• Technologies have lots of additional support for tuning this

20

int main(int argc, char *argv[])

{

 const int N = 100000;

 int i, a[N];

 #pragma omp parallel for

 for (i=0; i < N; i++)

 a[i] = 2 * a[i];

 return 0;

}

Performance metrics and scaling

How is my parallel code performing and scaling?

21

Performance metrics

• Measure the execution time T

- how do we quantify performance improvements?

• Speed up
- typically S(N,P) < P

• Parallel efficiency
- typically E(N,P) < 1

• Serial efficiency
- typically E(N) <= 1

Where N is the size of the problem and P the number of processors

22

 PNT

NT
PNS

,

1,
,

E N,P() =
S N,P()
P

=
T N,1()
P T N,P()

E N() =
Tbest N()
T N,1()

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

- Strong Scaling – total problem size stays the same as the number

of processors increases

- Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful and more difficult

to achieve than weak scaling

23

Strong scaling

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

24

Weak scaling

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u

n
ti

m
e

(s
)

No. of processors

25

The serial fraction

An inherent limit to speed up when we parallelise problems

26

The serial section of code

“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

27

Amdahl’s law

• A typical program has two categories of components
- Inherently sequential sections: can’t be run in parallel

- Potentially parallel sections

• Assume fraction a is serial and parallel part is100% efficient:

• Parallel runtime

• Parallel speedup

• We are fundamentally limited by the serial fraction
- For a = 0, S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by 1/ a for any P
• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9

Sharpen & CFD

P

NT
NTPNT

)1,()α1(
)1,(α),(

)α1(α),(

)1,(
),(

P

P

PNT

NT
PNS

28

Gustafson’s Law

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

29

Utilising Large Parallel Machines

• Assume parallel part is proportional to N

- and that serial fraction a is independent of N

- time

- speedup

• Scale problem size with CPUs, i.e. set N = P (weak scaling)

- speedup S(P,P) = a + (1-a) P

- efficiency E(P,P) = a/P + (1-a)

P

N

N

PNT

NT
PNS

)α1(α

)α1(α

),(

)1,(
),(

30

P

NT
T

PNTPNTPNT
parallelserial

1,1α1
1,1α

,,,

Gustafson’s Law

• If you increase the amount of work done by each parallel

task then the serial component will not dominate

- Increase the problem size to maintain scaling

- Can do this by adding extra complexity or increasing the overall

problem size

CFD

Due to the scaling

of N, the serial

fraction effectively

becomes a/P

Number of

processors

Strong scaling

(Amdahl’s law)

Weak scaling

(Gustafson’s law)

16 6.4 14.5

1024 9.9 922

31

Analogy: Flying London to New York

32

Buckingham Palace to Empire State

• By airplane
- Distance: 5600 km; speed: 600 mph

• Flight time: 8 hours

• But……
- 2 hours to check in at the airport in London

- 2 hours to get through immigration & collect bag in NY

- Fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 1800 mph
- Flight time: 2 hours 40 mins

• But still need to spend 4 hours in airports

- Total journey time = 2hrs 40 mins + 4 hours = 6 hrs 40 mins

• Speedup of 1.8 not 3.0

• Amdahl’s law! a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

33

Flying London to Sydney

34

Buckingham Palace to Sydney Opera

• By airplane

- Distance: 14400 miles; speed: 600 mph; flight time; 24 hours

- Serial overhead stays the same

• total time: 4 + 24 = 28 hours

• Triple the flight speed

- Total time = 4 hours + 8 hours = 12 hours

- Speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!

- Bigger problems scale better

- Increase both distance (i.e. N) and max speed (i.e. P) by three

- Maintain same balance: 4 “serial” + 8 “parallel”

35

Load imbalance

Keeping processors equally busy

36

Load Imbalance

• These laws all assumed all processors are equally busy
- But what happens if some run out of work?

• Specific case
- Four people pack boxes with cans of soup: 1 minute per box

- Takes 6 minutes as everyone is waiting for Anna to finish!

- If we gave everyone same number of boxes, would take 3 minutes

• Scalability isn’t everything
- Make the best use of the processors at hand before increasing the

number of processors

Person Anna Paul David Helen Total

boxes 6 1 3 2 12

37

Quantifying Load Imbalance

• Define Load Imbalance Factor

 LIF = maximum load / average load

- For perfectly balanced problems LIF = 1.0, as expected

• In general, LIF > 1.0

- LIF tells you how much faster your calculation could be with
balanced load

• Box packing
- LIF = 6/3 = 2

- Initial time = 6 minutes

- Best time = 6 minutes / 2 = 3 minutes

38

Summary

39

Summary

• There are many considerations when parallelising code

• A variety of patterns exist that can provide well known approaches to
parallelising a serial problem
- You will see examples of some of these during the practical sessions

• Scaling is important, as the more a code scales the larger a machine it
can take advantage of
- can consider weak and strong scaling

- in practice, overheads limit the scalability of real parallel programs

- Amdahl’s law models these in terms of serial and parallel fractions

- larger problems generally scale better: Gustafson’s law

• Load balance is also a crucial factor

• Metrics exist to give you an indication of how well your code performs
and scales

 40

