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Outline 

• Why parallel programming? 

 

• Decomposition 

- Geometric decomposition 

- Task farm 

- Pipeline 

- Loop parallelism 

 

• Performance metrics and scaling 

- Amdahl’s law 

- Gustafson’s law 

 

3 



Why use parallel programming? 

It is harder than serial so why bother? 

4 



Why? 

• Parallel programming is more difficult than its sequential 

counterpart 

 

• However we are reaching limitations in uniprocessor design 

- Physical limitations to size and speed of a single chip 

- Developing new processor technology is very expensive 

- Some fundamental limits such as speed of light and size of atoms 

 

• Parallelism is not a silver bullet 

- There are many additional considerations 

- Careful thought is required to take advantage of parallel machines 
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Performance 

• A key aim is to solve problems faster 

- To improve the time to solution 

- Enable new scientific problems to be solved 

 

• To exploit parallel computers, we need to split the program up 
between different processors 

 

• Ideally, would like program to run P times faster on P 
processors 

- Not all parts of program can be successfully split up 

- Splitting the program up may introduce additional overheads such as 
communication 
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Parallel tasks 

• How we split a problem up in parallel is critical 
1. Limit communication (especially the number of messages) 

2. Balance the load so all processors are equally busy 

 

• Tightly coupled problems require lots of interaction 
between their parallel tasks 

• Embarrassingly parallel problems require very little (or no) 
interaction between their parallel tasks 
- E.g. the image sharpening exercise 

 

• In reality most problems sit somewhere between two 
extremes 
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Decomposition 

How do we split problems up to solve efficiently in parallel? 
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Decomposition 

• One of the most challenging, but also most important, 

decisions is how to split the problem up 

 

• How you do this depends upon a number of factors 

- The nature of the problem 

- The amount of communication required 

- Support from implementation technologies 

 

• We are going to look at some frequently used 

decompositions 

- will be illustrated by later Fractal and CFD practical examples 
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Geometric decomposition 

• Take advantage of the geometric properties of a problem 

 

Image from ITWM: http://www.itwm.fraunhofer.de/en/departments/flow-and-

material-simulation/mechanics-of-materials/domain-decomposition-and-parallel-

mesh-generation.html 
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Geometric decomposition 

• Splitting the problem up does have an associated cost 

- Namely communication between processors  

- Need to carefully consider granularity 

- Aim to minimise communication and maximise computation 
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• Chunks too large 

- too little parallelism 

• Chunks too small 

- communications rule 

• Granularity 

- size of chunks 

of work 



Halo swapping 

• Swap data in bulk at pre-

defined intervals 

 

• Often only need 

information on the 

boundaries 

 

• Many small messages 

result in far greater 

overhead 
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Load imbalance 
• Execution time determined by slowest processor 

- each processor should have (roughly) the same amount of work, i.e. 
they should be load balanced 

 

 

 

 

 

 

 

 

 

• Assign multiple partitions per processor 
- see Fractal example 

- Additional techniques such as work stealing available 
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Task farm (master worker) 

• Split the problem up into distinct, independent, tasks 

 

 

 

 

 

• Master process sends task to a worker 

• Worker process sends results back to the master 

• The number of tasks is often much greater than the 

number of workers and tasks get allocated to idle workers 

 

Master 

Worker 3 Worker 2 Worker 1 Worker n … 

Fractal 
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Task farm considerations 

• Communication is between the master and the workers 
- Communication between the workers can complicate things 

 

• The master process can become a bottleneck 
- Workers are idle waiting for the master to send them a task or 

acknowledge receipt of results 

- Potential solution: implement work stealing 

 

• Resilience – what happens if a worker stops responding? 
- Master could maintain a list of tasks and redistribute that work’s 

work 
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Pipelines 

• A problem involves operating on many pieces of data in 

turn. The overall calculation can be viewed as data 

flowing through a sequence of stages and being operated 

on at each stage. 

 

 

 

 

• Each stage runs on a processor, each processor 

communicates with the processor holding the next stage 

• One way flow of data 
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Example: pipeline with 4 processors 

 

 

 

 

 

 

• Each processor (one per colour) is responsible for a 

different task or stage of the pipeline 

• Each processor acts on data (numbered) as they move 

through the pipeline 

 

Data Result 

1 

2 1 

3 2 1 

4 3 2 1 
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Examples of pipelines 

• CPU architectures 
- Fetch, decode, execute, write back 

- Intel Pentium 4 had a 20 stage pipeline 

• Unix shell 
- i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’ 

• Graphics/GPU pipeline 

 

• A generalisation of pipeline (a workflow, or dataflow) is 
becoming more and more relevant to large, distributed 
scientific workflows 

• Can combine the pipeline with other decompositions 
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Loop parallelism 

• Serial programs can often be dominated by 
computationally intensive loops. 

• Can be applied incrementally, in small steps based upon 
a working code 
- This makes the decomposition very useful 

- Often large restructuring of the code is not required 

- e.g. compare different parallelisations for later CFD exercise 

• Tends to work best with small scale parallelism 
- Not suited to all architectures 

- Not suited to all loops 

• If the runtime is not dominated by loops, or some loops 
can not be parallelised then these factors can dominate 
(Amdahl’s law.) 
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Example of loop parallelism: 

• If we ignore all parallelisation directives then should just 

run in serial 

• Technologies have lots of additional support for tuning this 
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int main(int argc, char *argv[]) 

{ 

  const int N = 100000; 

  int i, a[N]; 

 

  #pragma omp parallel for 

  for (i=0; i < N; i++) 

    a[i] = 2 * a[i]; 

 

  return 0; 

} 



Performance metrics and scaling 

How is my parallel code performing and scaling? 
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Performance metrics 

 
• Measure the execution time T 

- how do we quantify performance improvements? 
 

• Speed up 
- typically S(N,P) < P 

 

• Parallel efficiency 
- typically E(N,P) < 1 

 

• Serial efficiency 
- typically E(N) <= 1 

 

Where N is the size of the problem and P the number of processors 
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Scaling 

• Scaling is how the performance of a parallel application 

changes as the number of processors is increased 

 

• There are two different types of scaling: 

- Strong Scaling – total problem size stays the same as the number 

of processors increases 

- Weak Scaling – the problem size increases at the same rate as the 

number of processors, keeping the amount of work per processor 

the same 

• Strong scaling is generally more useful and more difficult 

to achieve than weak scaling 
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Strong scaling 
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Weak scaling 
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The serial fraction 

An inherent limit to speed up when we parallelise problems 
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The serial section of code 

“The performance improvement to be gained by parallelisation is limited 

by the proportion of the code which is serial” 

Gene Amdahl, 1967 
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Amdahl’s law 

• A typical program has two categories of components 
- Inherently sequential sections: can’t be run in parallel 

- Potentially parallel sections 

• Assume fraction a is serial and parallel part is100% efficient: 

 

• Parallel runtime 
 

 

• Parallel speedup 

 

• We are fundamentally limited by the serial fraction 
- For a = 0, S = P as expected (i.e. efficiency = 100%) 

- Otherwise, speedup limited by 1/ a for any P 
• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up 

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9 
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Gustafson’s Law 

• We need larger problems for larger numbers of CPUs 

 

 

 

 

 

 

 

 

• Whilst we are still limited by the serial fraction, it becomes 
less important 
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Utilising Large Parallel Machines 

• Assume parallel part is proportional to N 

- and that serial fraction a is independent of N 

- time 

 

 

 

 

- speedup 

 

• Scale problem size with CPUs, i.e. set N = P  (weak scaling) 

- speedup S(P,P)  = a + (1-a) P 

- efficiency E(P,P) = a/P + (1-a) 
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Gustafson’s Law 

• If you increase the amount of work done by each parallel 

task then the serial component will not dominate 

- Increase the problem size to maintain scaling 

- Can do this by adding extra complexity or increasing the overall 

problem size 

 

 

CFD 

Due to the scaling 

of N, the serial 

fraction effectively 

becomes a/P 

Number of 

processors 

Strong scaling 

(Amdahl’s law) 

 

Weak scaling 

(Gustafson’s law) 

16 6.4 14.5 

1024 9.9 922 
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Analogy: Flying London to New York 
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Buckingham Palace to Empire State 

• By airplane 
- Distance: 5600 km; speed: 600 mph 

• Flight time: 8 hours 

• But…… 
- 2 hours to check in at the airport in London 

- 2 hours to get through immigration & collect bag in NY 

- Fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours 

• Triple the flight speed with Concorde to 1800 mph 
- Flight time: 2 hours 40 mins 

• But still need to spend 4 hours in airports 

- Total journey time = 2hrs 40 mins + 4 hours = 6 hrs 40 mins 

• Speedup of 1.8 not 3.0 

• Amdahl’s law! a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours) 
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Flying London to Sydney 

34 



Buckingham Palace to Sydney Opera 

• By airplane 

- Distance: 14400 miles; speed: 600 mph; flight time; 24 hours 

- Serial overhead stays the same 

• total time: 4 + 24 = 28 hours 

 

• Triple the flight speed 

- Total time = 4 hours + 8 hours = 12 hours 

- Speedup = 2.3 (as opposed to 1.8 for New York) 

 

• Gustafson’s law! 

- Bigger problems scale better 

- Increase both distance (i.e. N) and max speed (i.e. P) by three 

- Maintain same balance: 4 “serial” + 8 “parallel” 
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Load imbalance 

Keeping processors equally busy 
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Load Imbalance 

• These laws all assumed all processors are equally busy 
- But what happens if some run out of work? 

• Specific case 
- Four people pack boxes with cans of soup: 1 minute per box 

 

 

 

- Takes 6 minutes as everyone is waiting for Anna to finish! 

- If we gave everyone same number of boxes, would take 3 minutes 
 

• Scalability isn’t everything 
- Make the best use of the processors at hand before increasing the 

number of processors 

 

Person Anna Paul David Helen Total 

# boxes 6 1 3 2 12 
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Quantifying Load Imbalance 

• Define Load Imbalance Factor 
 

 LIF = maximum load / average load 
 

- For perfectly balanced problems LIF = 1.0, as expected 

• In general, LIF > 1.0 

- LIF tells you how much faster your calculation could be with 
balanced load 
 

• Box packing 
- LIF = 6/3 = 2 

- Initial time = 6 minutes 

- Best time = 6 minutes / 2 = 3 minutes 
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Summary 
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Summary 

• There are many considerations when parallelising code 

 

• A variety of patterns exist that can provide well known approaches to 
parallelising a serial problem 
- You will see examples of some of these during the practical sessions 

 

• Scaling is important, as the more a code scales the larger a machine it 
can take advantage of 
- can consider weak and strong scaling 

- in practice, overheads limit the scalability of real parallel programs 

- Amdahl’s law models these in terms of serial and parallel fractions 

- larger problems generally scale better: Gustafson’s law 

 

• Load balance is also a crucial factor 

 

• Metrics exist to give you an indication of how well your code performs 
and scales 
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