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Investigating task farms and load imbalance 
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Aims 

• Explore how the granularity of tasks impacts performance 

- Trade-off between the amount of parallelism (number of parallel 

tasks) and amount of communication (size of tasks) 

 

• Consider issues surrounding load balance 

- Remember the runtime of the code is determined by the slowest 

running task – so we want work to be as evenly distributed as 

possible 

- The exercise introduces a Load Imbalance Factor (LIF) which 

illustrates how much faster your code could run if the load was 

evenly distributed 
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What are fractals? 

Ideas behind the Mandelbrot and Julia sets 
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The Mandelbrot Set 

• The Mandelbrot Set is the set of numbers resulting from 

repeated iterations of the complex (i = √-1) function:                                                                         
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1 with the initial condition 0
0

Z

• C = x0 +iy0 belongs to the Mandelbrot set if |Zn| 

remains bounded i.e. does not diverge 

   Zn = xn + iyn , Zn
2 = (xn

2 – yn
2 + 2ixnyn ) , |Zn|

2 =(xn
2+yn

2) 
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The Mandelbrot Set cont. 

• Separating out the real and imaginary parts gives: 

 Zn = Zn
r + iZn

i

Zn
r = x2

n-1 - yn-1

2 + x0

Zn
i = 2xn-1yn-1 + y0

• Take the threshold value as: 

 

• Set the maximum number of iterations to Nmax 

- Assume that Z does not diverge at higher values of Nmax 

Z
2

³ 4.0

6 



The Julia Set 

• Similar algorithm to Mandelbrot Set – recall: 

 

 

• There are an infinite number of Julia sets, parameterised 

by a complex number C 

 

 

 

- for example, C = 0.8 + i 0.156 
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Visualisation  

To visualise a Mandelbrot/Julia set: 

 

• Represent the complex plane as a 2D grid where complex 

numbers correspond to points on the grid (x, y) 

• Calculate number of iterations N for the series to diverge 

(exceed the threshold) for each point on the grid 

- If it does not diverge, N = Nmax 

• Convert the value of N to a colour and plot this on the grid 
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Mandelbrot Set 

Very 

quick to 

compute 

Very 

slow to 

compute 
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Parallel implementation 

How do we parallelise computation of these fractals? 
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Parallelisation 

• Values for each coordinate depend only on the previous 
values at that coordinate. 
- decompose 2D grid into equally sized blocks 

- no communications between blocks needed. 

• Don’t know in advance how much work is needed. 
- number of iterations across the blocks varies. 

- work dynamically assigned to workers as they become available. 

 

Implementation 

• Split the grid into blocks: 
- each block corresponds to a task. 

- master process hands out tasks to worker processes. 

- workers return completed task to master. 
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Example: Parallelisation on 4 CPUs 

• In diagram, colour represents which 
worker did the task 
- number gives the task id 

- tasks scan from left to right, moving 
upwards 
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Parallelisation cont. 

1 2 3 4 

1 4 2 1 

3 3 1 3 

4 4 4 4 

• in supplied code 

• shading represents worker 

• here we have added worker 

id as a number by hand 

 

• e.g. taskfarm run on 5 CPUs 

1 master 

4 workers 

• total number of tasks = 16 
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Notes about the exercise 
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Exercise 

• You are supplied with source code etc. 
 

• Compile and run on the machine 

- Visualise results 

 

• Quantify performance results 
 

• For a fixed number of workers 

- improve load balance by increasing number of tasks (decrease size) 

- compute LIF to estimate minimum achievable runtime 

- is this minimum ever reached? 
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Exercise outcomes 

What do the timings tell us about HPC machines? 
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Example results (fixed number of workers) 
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Results cont. 
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16 workers and 16 tasks 

-----Workload Summary (number of 

iterations)---- 

 

Total Number of Workers: 16 

Total Number of Tasks:   16 

 

Total   Worker Load: 498023053 

Average Worker Load: 31126440 

Maximum Worker Load: 156694685 

Minimum Worker Load: 62822 

 

Time taken by 16 workers was 

1.929219 (secs) 

Load Imbalance Factor: 5.034134 
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16 workers and 64 tasks 

-----Workload Summary (number of 

iterations)--------- 

 

Total Number of Workers: 16 

Total Number of Tasks:   64 

 

Total   Worker Load: 498023053 

Average Worker Load: 31126440 

Maximum Worker Load: 46743511 

Minimum Worker Load: 10968369 

 

Time taken by 16 workers was 

0.586923 (secs) 

Load Imbalance Factor: 1.501730 
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Key points to take away 

TASK FARMS 

• Also known as the master/worker pattern 

• Allows a master process to distribute work to a set of worker 

processors.  

• Can be used for other types of tasks but it complicates the situation 

and other patterns may be more suitable for implementing.  

• Master process is responsible for creating, distributing and 

gathering the individual jobs.  

• Can improve load balance by using more tasks than workers 

• with some overhead 

• Load imbalance adversely affects performance 

• especially as number of processors increases 
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Key points to take away 

TASKS 

• Units of work 

• Vary in size, do not have to be of consistent execution 

time. If execution times are known it can help with load 

balancing.  

 

QUEUES 

• Master generates a pool of tasks and puts them in a 

queue 

• Workers assigned task from queue when idle 
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Key points to take away 

LOAD BALANCING 

• How a system determines how work or tasks are 

distributed across workers (processes or threads) 

• Successful load balancing avoids idle processes and 

overloading single cores 

• Poor load balancing leads to under-utilised cores, 

reducing performance. 
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Key points to take away 

COST 

• Increasingly important 

• Finite budgets require optimal use of resources 

requested.  

• Load balancing is just one method of ensuring optimal 

usage and avoiding wasting resources. 

• More power and resources do not necessarily mean  

improved performance. 

• Always ask – is it necessary to run this on 4000 cores or 

could it be run on 2000 more efficiently? 
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