
Fractals exercise
Investigating task farms and load imbalance

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Aims

• Explore how the granularity of tasks impacts performance

- Trade-off between the amount of parallelism (number of parallel

tasks) and amount of communication (size of tasks)

• Consider issues surrounding load balance

- Remember the runtime of the code is determined by the slowest

running task – so we want work to be as evenly distributed as

possible

- The exercise introduces a Load Imbalance Factor (LIF) which

illustrates how much faster your code could run if the load was

evenly distributed

3

What are fractals?

Ideas behind the Mandelbrot and Julia sets

4

The Mandelbrot Set

• The Mandelbrot Set is the set of numbers resulting from

repeated iterations of the complex (i = √-1) function:

CZZ
nn

2

1 with the initial condition 0
0

Z

• C = x0 +iy0 belongs to the Mandelbrot set if |Zn|

remains bounded i.e. does not diverge

 Zn = xn + iyn , Zn
2 = (xn

2 – yn
2 + 2ixnyn) , |Zn|

2 =(xn
2+yn

2)

5

The Mandelbrot Set cont.

• Separating out the real and imaginary parts gives:

 Zn = Zn
r + iZn

i

Zn
r = x2

n-1 - yn-1

2 + x0

Zn
i = 2xn-1yn-1 + y0

• Take the threshold value as:

• Set the maximum number of iterations to Nmax

- Assume that Z does not diverge at higher values of Nmax

Z
2

³ 4.0

6

The Julia Set

• Similar algorithm to Mandelbrot Set – recall:

• There are an infinite number of Julia sets, parameterised

by a complex number C

- for example, C = 0.8 + i 0.156

CZZ
nn

2

1
0

0
Z, 00

iyxC ,

CZZ
nn

2

1
,

00 0
iyxZ

7

Visualisation

To visualise a Mandelbrot/Julia set:

• Represent the complex plane as a 2D grid where complex

numbers correspond to points on the grid (x, y)

• Calculate number of iterations N for the series to diverge

(exceed the threshold) for each point on the grid

- If it does not diverge, N = Nmax

• Convert the value of N to a colour and plot this on the grid

8

Mandelbrot Set

Very

quick to

compute

Very

slow to

compute

9

Parallel implementation

How do we parallelise computation of these fractals?

10

Parallelisation

• Values for each coordinate depend only on the previous
values at that coordinate.
- decompose 2D grid into equally sized blocks

- no communications between blocks needed.

• Don’t know in advance how much work is needed.
- number of iterations across the blocks varies.

- work dynamically assigned to workers as they become available.

Implementation

• Split the grid into blocks:
- each block corresponds to a task.

- master process hands out tasks to worker processes.

- workers return completed task to master.

11

Example: Parallelisation on 4 CPUs

• In diagram, colour represents which
worker did the task
- number gives the task id

- tasks scan from left to right, moving
upwards

x

master workers

CPU 1

CPU 2 CPU 3 CPU 4

 7

 4

 1

 1 2 3

 8

 2

 9

 6

 3

 5 5 2

y

12

Parallelisation cont.

1 2 3 4

1 4 2 1

3 3 1 3

4 4 4 4

• in supplied code

• shading represents worker

• here we have added worker

id as a number by hand

• e.g. taskfarm run on 5 CPUs

1 master

4 workers

• total number of tasks = 16

13

Notes about the exercise

14

Exercise

• You are supplied with source code etc.

• Compile and run on the machine

- Visualise results

• Quantify performance results

• For a fixed number of workers

- improve load balance by increasing number of tasks (decrease size)

- compute LIF to estimate minimum achievable runtime

- is this minimum ever reached?

15

Exercise outcomes

What do the timings tell us about HPC machines?

16

Example results (fixed number of workers)

17

Results cont.

18

16 workers and 16 tasks

-----Workload Summary (number of

iterations)----

Total Number of Workers: 16

Total Number of Tasks: 16

Total Worker Load: 498023053

Average Worker Load: 31126440

Maximum Worker Load: 156694685

Minimum Worker Load: 62822

Time taken by 16 workers was

1.929219 (secs)

Load Imbalance Factor: 5.034134

19

16 workers and 64 tasks

-----Workload Summary (number of

iterations)---------

Total Number of Workers: 16

Total Number of Tasks: 64

Total Worker Load: 498023053

Average Worker Load: 31126440

Maximum Worker Load: 46743511

Minimum Worker Load: 10968369

Time taken by 16 workers was

0.586923 (secs)

Load Imbalance Factor: 1.501730

20

Key points to take away

TASK FARMS

• Also known as the master/worker pattern

• Allows a master process to distribute work to a set of worker

processors.

• Can be used for other types of tasks but it complicates the situation

and other patterns may be more suitable for implementing.

• Master process is responsible for creating, distributing and

gathering the individual jobs.

• Can improve load balance by using more tasks than workers

• with some overhead

• Load imbalance adversely affects performance

• especially as number of processors increases

21

Key points to take away

TASKS

• Units of work

• Vary in size, do not have to be of consistent execution

time. If execution times are known it can help with load

balancing.

QUEUES

• Master generates a pool of tasks and puts them in a

queue

• Workers assigned task from queue when idle

22

Key points to take away

LOAD BALANCING

• How a system determines how work or tasks are

distributed across workers (processes or threads)

• Successful load balancing avoids idle processes and

overloading single cores

• Poor load balancing leads to under-utilised cores,

reducing performance.

23

Key points to take away

COST

• Increasingly important

• Finite budgets require optimal use of resources

requested.

• Load balancing is just one method of ensuring optimal

usage and avoiding wasting resources.

• More power and resources do not necessarily mean

improved performance.

• Always ask – is it necessary to run this on 4000 cores or

could it be run on 2000 more efficiently?

24

