
Advanced OpenMP

OpenMP Tips, tricks and gotchas

Directives

• Mistyping the sentinel (e.g. !OMP or #pragma opm)
typically raises no error message.

- Be careful!

- Extra nasty if it is e.g. #pragma opm atomic – race condition!

-Write a script to search your code for your common typos

3

Writing code that works without OpenMP too

• The macro _OPENMP is defined if code is compiled with
the OpenMP switch.
- You can use this to conditionally compile code so that it works with

and without OpenMP enabled.

• If you want to link dummy OpenMP library routines into
sequential code, there is code in the standard you can
copy (Appendix A in 4.0)

4

Parallel regions
• The overhead of executing a parallel region is typically in the

tens of microseconds range
- depends on compiler, hardware, no. of threads

• The sequential execution time of a section of code has to be
several times this to make it worthwhile parallelising.

• If a code section is only sometimes long enough, use the if
clause to decide at runtime whether to go parallel or not.
-Overhead on one thread is typically much smaller (<1μs).

• You can use the EPCC OpenMP microbenchmarks to do
detailed measurements of overheads on your system.

• Download from
www.epcc.ed.ac.uk/research/computing/performance-
characterisation-and-benchmarking

5

Is my loop parallelisable?
• Quick and dirty test for whether the iterations of a loop are

independent.
• Run the loop in reverse order!!
• Not infallible, but counterexamples are quite hard to construct.

6

Loops and nowait

#pragma omp parallel
{
#pragma omp for schedule(static) nowait

for(i=0;i<N;i++){
a[i] =

}
#pragma omp for schedule(static)

for(i=0;i<N;i++){
... = a[i]

}
}

• This is safe so long as the
number of iterations in the
two loops and the
schedules are the same
(must be static, but you
can specify a chunksize)

• Guaranteed to get same
mapping of iterations to

threads.

7

Default schedule
• Note that the default schedule for loops with no schedule

clause is implementation defined.
• Doesn’t have to be STATIC.
• In practice, in all implementations I know of, it is.
• Nevertheless you should not rely on this!
• Also note that SCHEDULE(STATIC) does not completely

specify the distribution of loop iterations.
- don’t write code that relies on a particular mapping of iterations to

threads

8

Tuning the chunksize

• Tuning the chunksize for static or dynamic schedules can be
tricky because the optimal chunksize can depend quite
strongly on the number of threads.

• It’s often more robust to tune the number of chunks per thread
and derive the chunksize from that.
- chunksize expression does not have to be a compile-time constant

9

SINGLE or MASTER?

• Both constructs cause a code block to be executed by one
thread only, while the others skip it: which should you use?

• MASTER has lower overhead (it’s just a test, whereas
SINGLE requires some synchronisation).

• But beware that MASTER has no implied barrier!

• If you expect some threads to arrive before others, use
SINGLE, otherwise use MASTER

10

Data sharing attributes

• Don’t forget that private variables are uninitialised on entry to
parallel regions!

• Can use firstprivate, but it’s more likely to be an error.
- use cases for firstprivate are surprisingly rare.

11

Default(none)
• The default behaviour for parallel regions and

worksharing construct is default(shared)

• This is extremely dangerous - makes it far too easily to
accidentally share variables.

• Possibly the worst design decision in the history of
OpenMP!

• Always, always use default(none)
- I mean always. No exceptions!
- Everybody suffers from “variable blindness”.

12

Spot the bug!

#pragma omp parallel for private(temp)
for(i=0;i<N;i++){

for (j=0;j<M;j++){
temp = b[i]*c[j];
a[i][j] = temp * temp + d[i];

}
}

• May always get the right result with sufficient compiler
optimisation!

13

Private global variables
double foo;

#pragma omp parallel \
private(foo)
{
foo =
a = somefunc();

}

extern double foo;

double sumfunc(void){

... = foo;

}

• Unspecified whether the reference to foo in somefunc is to the
original storage or the private copy.

• Unportable and therefore unusable!
• If you want access to the private copy, pass it through the

argument list (or use threadprivate).

14

Huge long loops

• What should I do in this situation? (typical old-fashioned
Fortran style)

do i=1,n
..... several pages of code referencing 100+

variables
end do

• Determining the correct scope (private/shared/reduction) for
all those variables is tedious, error prone and difficult to test
adequately.

15

• Refactor sequential code to
do i=1,n

call loopbody(......)
end do

• Make all loop temporary variables local to loopbody
• Pass the rest through argument list
• Much easier to test for correctness!
• Then parallelise......
• C/C++ programmers can declare temporaries in the scope of

the loop body.

16

Reduction race trap
#pragma omp parallel shared(sum, b)
{
sum = 0.0;

#pragma omp for reduction(+:sum)
for(i=0;i<n:i++) {
sum += b[i];

}
.... = sum;
}

• There is a race between the initialisation of sum and the
updates to it at the end of the loop.

17

Missing SAVE or static
• Compiling my sequential code with the OpenMP flag caused it

to break: what happened?
• You may have a bug in your code which is assuming that the

contents of a local variable are preserved between function
calls.
- compiling with OpenMP flag forces all local variables to be stack

allocated and not heap allocated
-might also cause stack overflow

• Need to use SAVE or static correctly
- but these variables are then shared by default
-may need to make them threadprivate
- “first time through” code may need refactoring (e.g. execute it before the

parallel region)

18

Stack size

• If you have large private data structures, it is possible to run
out of stack space.

• The size of thread stack apart from the master thread can be
controlled by the OMP_STACKSIZE environment variable.

• The size of the master thread’s stack is controlled in the same
way as for sequential program (e.g. compiler switch or using
ulimit).
-OpenMP can’t control this as by the time the runtime is called it’s too

late!

19

Critical and atomic

• You can’t protect updates to shared variables in one place
with atomic and another with critical, if they might contend.

• No mutual exclusion between these
- critical protects code, atomic protects memory locations.

#pragma omp parallel
{
#pragma omp critical
a+=2;

#pragma omp atomic
a+=3;

}

20

Allocating storage based on number of threads
• Sometimes you want to allocate some storage whose size is

determined by the number of threads.
- but how do you know how many threads the next parallel region will

use?
• Can call omp_get_max_threads() which returns the value

of the nthreads-var ICV. The number of threads used for the
next parallel region will not exceed this
- except if a num_threads clause is used.

• Note that the implementation can always deliver fewer threads
than this value
- if your code depends on there actually being a certain number of

threads, you should always call omp_get_num_threads() to check

21

Environment for performance

• There are some environment variables you should set to
maximise performance.
- don’t rely on the defaults for these!

OMP_WAIT_POLICY=active

• Encourages idle threads to spin rather than sleep
OMP_DYNAMIC=false

• Don’t let the runtime deliver fewer threads than you asked for
OMP_PROC_BIND=true

• Prevents threads migrating between cores

22

Debugging tools
• Traditional debuggers such as DDT or Totalview have support

for OpenMP

• This is good, but they are not much help for tracking down
race conditions
- debugger changes the timing of event on different threads

• Race detection tools work in a different way
- capture all the memory accesses during a run, then analyse this data for

races which might have occured.
- Intel Inspector XE

23

Timers
-Make sure your timer actually does measure wall clock time!

-Do use omp_get_wtime() !

-Don’t use clock() for example
• measures CPU time accumulated across all threads
• no wonder you don’t see any speedup......

24

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

25

https://creativecommons.org/licenses/by-nc-sa/4.0/

