
Parallel design patterns 

ARCHER course
Vectorisation and active messaging



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …



Vectorisation: The Problem

• Vectorisation is an Implementation Strategy

• The Problem: Given a program whose run time is dominated 

by a set of calculations, how can this be translated into a 

parallel program?

• Also known as SIMD

Vectorisation

Task Parallelism Divide & Conquer
Geometric 

Decomposition
Recursive Data Pipeline

Event-Based 
Coordination Actor Pattern



• The problem is typically defined in terms of arrays that can be 

updated concurrently using the same instructions

• Create a single stream of instructions

- Can have a mask to allow for some selection based on data

• Can work well when your problem is truly data parallel

Single Instruction Multiple Data

• Single stream of 

instructions operating on 

multiple data streams



Trying to force SIMD through code
int inputNumbers[1000];

int results[4];

int i,j, finalSum;

for (i=0;i<=3;i++) {

results[i]=0;

for (j=0;j<=249;j++) {

results[i] += inputNumbers[i + j*4];

}

}

finalSum=0;

for (i=0;i<=3;i++) {

finalSum+=results[i];

}

int inputNumbers[1000];

int i,finalSum;

finalSum=0;

for (i=0;i<=999;i++) {

finalSum+=inputNumbers[i];

}



Streaming SIMD Extensions (SSE)

result.x = v1.x + v2.x; 

result.y = v1.y + v2.y; 

result.z = v1.z + v2.z; 

result.w = v1.w + v2.w;

• SIMD instruction set added to Intel CPUs in 1999

– SSE1 added eight 128 bit registers where data can be packed into 

and operated on concurrently with associated instructions

movaps xmm0, [v1] v1.x v1.y v1.z v1.w

addps xmm0, [v2] v1.x+v2.x v1.y+v2.y v1.z+v2.z v1.w+v2.w



SIMD technologies



Automatic vectorisation

• Compilers will attempt to automatically vectorise your 

code when compiled with optimisation enabled (–O3 on 

GCC)

- With GCC you can get feedback on this using the -ftree-vectorizer-

verbose=n flag, where n is 1 to 6 (the higher = more information)

• For single and double precision floating point can instruct 

the compiler to do this via SSE

- With gcc using the flags -msse2, -mfpmath=sse

- Can involve lots of memory to register movements so work 

experimenting with this flag to see if it is worth it



Manual vectorisation through GCC

• Compiler intrinsics support SSE

typedef int v4si __attribute__ ((vector_size (16))); 

v4si v1, v2, result; 

result = v1 + v2;

The base 

type

Vector is 16 bytes wide, 

which is 4 integers

Each of these variables 

contains 4 integer elements

Each element of v1 added 

to corresponding element of 

v2 and the result stored in 

result



Compiler intrinsics with sum example
#include <emmintrin.h>

…

int inputNumbers[1000] ;

__m128i s, v =_mm_set_epi32(0,0,0,0);

int j, finalSum=0;

for (j=0;j<=999;j+=4) {

s=_mm_set_epi32(inputNumbers[j], inputNumbers[j+1], 

inputNumbers[j+2], inputNumbers[j+3]);

v+=s;

}

for (j=0;j<=3;j++) {

finalSum+=((int*)&v)[j];

}

int inputNumbers[1000];

int i,finalSum;

finalSum=0;

for (i=0;i<=999;i++) {

finalSum+=inputNumbers[i];

}

Compiled with flags -msse, -msse2, -march=native



OpenMP 4.0 SIMD
• The SIMD directive means that 

iterations of the loop can be 

executed by the SIMD lanes 

available to the thread.

int inputNumbers[1000];

int i,finalSum=0;

#pragma omp simd reduction(+:finalSum)

for (i=0;i<=999;i++) {

finalSum+=inputNumbers[i];

}

int inputNumbers[1000];

int i,finalSum=0;

#pragma omp for simd \

reduction(+:finalSum) schedule (static, 4)

for (i=0;i<=999;i++) {

finalSum+=inputNumbers[i];

}

• Can combine with the 

for directive to split 

iterations across threads 

and then across SIMD 

lanes

– The schedule should be a 

multiple of the SIMD 

length
https://doc.itc.rwth-

aachen.de/download/attachments/28344675/SIMD+Vectorization+with+

OpenMP.PDF



GPUs as a big vector machine

CPU (few 

large cores)

GPU (many 

simple cores)

Code (compute 

kernels) + data

Result data

• Use GPU for floating point 

intensive calculations

• Use CPU for everything else

• Single Instruction Multiple 

Thread (SIMT)



Kernels, Blocks, Warps and Threads

• 32 threads per warp which are mapped to SMs for execution

- Each thread executes on a CUDA core which are themselves pipelined

• Each thread of the warp executing on a CUDA core must be 

doing the same instruction, just on different data

- Keeps electronics simple, warps can be paused and interleaved

Block

Block

Block

Block

Block

Block

Thread 1 Thread 2 Thread 3 Thread 32……

Thread 1 Thread 2 Thread 3 Thread 32……

Thread 1 Thread 2 Thread 3 Thread 32……

Warp 1

Warp 2

Warp 3

Compute kernel



Key performance factors
1. How quickly you can transfer data to & 

from the GPU

- Parallel overhead

2. The amount of time the CPU and/or 

GPU will be idle

- Wasted resources/load imbalance

3. How well your code 

takes advantage of 

the GPU architecture 

– Keeping the floating 

point engine busy!

Porting step Million pairs/s

Initial MPI+OpenMP 250

Initial OpenACC 37

Optimised data transfer 61

Lattice data kept on GPU 839

Memory access pattern optimised for 

GPU

1190

Concurrency with streams 1270

Vectorised halo data movement 1812



Example: Modelling the atmosphere

Dynamics

Diffusion

Viscosity

Coriolis

buoyancy

GPU

advection

Send required data to GPU

Wait for results from GPU

Step fields combining CPU and 

GPU data

GPU source terms

CPU and GPU 

source terms

CPU
• Data transfer is 

asynchronous

• Constants copied 

across only once 

on model 

initialisation

• Share data 

between GPU 

kernels

- Wind in x,y,z is 

common to all



Vectorisation - summary
• Parallelism at multiple levels

- Instruction level, core level, processor level, node level

- Significant performance improvements can be obtained by leveraging 

vectorisation correctly

- Many compilers will do this automatically for you, but not all compilers 

are created equally!

- Technologies such as OpenMP and OpenACC (for GPUs) make this 

look similar to loop parallelism

• Viewing GPUs as SIMD engines

- Need to keep them feed with calculations to work on

- They work best doing floating point arithmetic

- Need to consider how to keep the CPU and GPU busy at the same time



Active messaging: The Problem

• Active messaging is an Implementation Strategy

• The Problem: We want to run multiple tasks, which are driven 

by irregular interactions, on a UE. How can we best structure 

our code to support this?

Active 
messaging

Task Parallelism Divide & Conquer
Geometric 

Decomposition
Recursive Data Pipeline

Event-Based 
Coordination Actor Pattern



Example problem
• I am running a code with lots of tasks per UE

- There are lots of tasks (e.g. function calls) that I have available to run on 

the UE and-so don’t want to block for communications. However my 

communications are irregular and I need to work with values I receive.

a=receive(1);

calculate(a);

handle=nonblocking_receive(1);

while (!test(handle)) {

Do some other work

}

calculate(a);

• This is OK but relies on being able to find some other work 

to do and carry lots of request handles around

– Might not be possible, or with irregular & unpredictable 

communications might be difficult to structure code generally to 

support this 



Active messaging
• The arrival of a message will activate some handling block of 

code on the target UE (also known as a callback)

send(data, 1, “hello”);

register_recv(calculate, 0, “hello”);

void calculate(data, metadata) {

………

}

UE 0

UE 1

• The unique identifier (UUID) is 

used to match the message with 

a specific handler

• The callback function will 

typically receive the data and 

metadata (such as amount of 

data, type etc.)

• Sending is either blocking or 

non-blocking

• The receive call is non-blocking

send(data, target rank, unique identifier);

register_recv(callback, source rank, unique identifier);



Active messaging
• Called active messaging as messages explicitly activate the 

block of code which will handle them

– Some or all of the code will be structured around these handlers

– Callback handlers might persist (i.e. can be called for many different 

messages) or transitory (once called they are deregistered.)

• Implementation choice between running handlers concurrently or 

sequentially

– When a message arrives do we kick a UE off (i.e. a thread from a pool) which 

calls the handler

– Or are messages queued up and processed one at a time?

• If you run handlers concurrently you will need to protect shared data 

shared between them (shared data pattern.)



Supports collective messaging too

• In this case each process issues a reduction, my_handler is then executed 

on process 0 with the resulting value
- Callback is only executed on process 0 once every single process has issued this call and the reduction 

is completed

- The callback routine could be NULL on other processes

• Crucially the UUIDs determine what collective messages match rather 

than the issue order
- This provides greater flexibility for irregular applications where codes might issue collective messages 

in different orders.

register_reduce(my_handler, my_value, “sum”, 0, “my_reduction1”);

void my_handler(data, metadata) {

………

}

The callback

routine

Value on each 

process to use
Operation Root Unique ID



Active messaging - implementation

• Have a map style structure where they key is a combination of the unique 

identifier and the source rank, the value is a pointer to the appropriate 

callback function

• Behind the scenes you poll for a messages, from this extract the unique ID 

and use this in combination with the source rank to find the appropriate 

callback handler function to execute

- The rest of the message is then split up to extract the data and any other metadata

register_recv(fn1, 0, “hello”);

register_recv(fn1, 1, “hello”);

register_recv(fn2, 0, “abc”);

hello 0
hello 1
abc 0

void fn1(data, metadata) {

………

}

void fn2(data, metadata) {

………

}

Unique ID
Source

Callback

key value



Active messaging - implementation
• Can build this on top of communication technologies like MPI

- When sending package the data and metadata (unique ID etc) up and 

send as type MPI_BYTE

- On the receiver side can probe for a messages and extract the message 

size (and source) from the status, allocate memory and then physical 

receive data (via MPI_Recv.)

• Might be driven by a thread continually polling for incoming data

• Some implementation challenges

- What if we have not yet registered a receive handler for a specific 

message but this message has arrived? – Need to store unmatched 

messages

- When should we terminate? –when all UEs are idle, there is no data in 

flight and no messages are outstanding



Example: In-situ data analytics

Prognostics Diagnostics



Diagnostics 

federator
Writer 

federator

Time 

manipulation

Time 

averaged

Instantaneous

NetCDF

file writer

NetCDF

output file

Writer 

state 

serialiser

Operators

Inter IO 

communications

External 

API

Raw 

data

Diagnostic data

Raw data

All of this on one core. 

But not very 

computationally 

intensive, so fine to 

have a thread pool and 

oversubscribe threads 

to the single core



Active messaging technologies

• Not so much in HPC but Charm++ is one example technology

- Built on C++, the programmer expresses their program components as 

parallel objects called chares

- The programmer can call methods on these chares held on other 

processes, which is effectively an active message to execute that 

method remotely with the provided arguments in a thread

- As methods in a chare can share object data, by default only one 

method can be active at any one time (one at a time concurrency 

protection – see shared data lecture.)

- NAMD, a popular molecular dynamics package is written in Charm++

• In other fields active messaging is fairly popular

- Remote Procedure Call (RPC) is a concrete example of 

this such as Java’s Remote Method Invocation (RMI)



Charm++ example

• Programmer must rewrite their code in C++ and this chares approach
- An additional .ci file must be written that defines a proxy for each object and feeds into their compiler

• One at a time concurrently is limiting, can disable this but then is entirely up to the 

programmer to manage concurrency

Taken from http://charm.cs.illinois.edu/research/charm



Active messaging - Summary
• This way of structuring the communications can provide 

additional flexibility

- Can be helpful when you have very many, asynchronous and different 

messages which you want to process in different ways

- Using the unique identifier to match against handling logic means you 

can kick off lots of communications without worrying too much about the 

ordering in which they will arrive

• Structuring the code in this manner can help organise the 

concurrency

- Especially if you allow for multiple handlers to execute concurrently

- Each handler can be viewed as a task, driven by the arrival of data. But 

it gets more challenging when these handlers need to interact or work 

with some shared data

- There are existing programming technologies, but none are mature


