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Distributed Array – Introduction

• Distributed Array is an Implementation Strategy that 

comes under the Data Structures sub-group. 
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Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures• Arrays often need 

to be partitioned 

between multiple 

UEs.

• How can this be 

done so that the 

program is both 

readable and 

efficient?



Distributed Array – Introduction

• Large arrays are fundamental data structures in scientific 

computing problems.

• Most systems have memory access times that vary 

substantially depending on which UE is accessing a 

particular array element.

- even if that system supports a global address space

- the challenge is to ensure that data elements are “nearby” at the 

right times during the computation

• For distributed systems, must explicitly distribute data.

• For NUMA systems, no need to split the data, but it’s still 

desirable to have the right memory “nearby”. 
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Distributed Array – Forces

• Load Balance

• Effective Memory Management

- make good use of the cache

• Clarity of Solution

- aim to have a clear mapping between local and global arrays

• The “solution” is the mapping between local and global 

arrays.
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An 8×8 Array
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

• Mapping an M×N matrix to 

P UEs...

- 1D block: element ai,j is 

assigned to pk where

- 1D block-cyclic 

• Mapping an M×N matrix to 

P×Q UEs...

- 2D block: element ai,j is 

assigned to pk,l where

- 2D block-cyclic

ڿ ⋯ ≡ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ⋯

ہ ⋯ ≡ 𝑓𝑙𝑜𝑜𝑟 ⋯
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

1D Block with P = 4

P0 P1 P2 P3

ai,j assigned to pk

𝑘 = ہ Τ𝑗 ڿ Τ𝑀 𝑃

𝑀 = 8

𝑗 = 0. . 7

• Mapping an M×N

matrix to P UEs...
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

P0 P1 P2 P3 P0 P1 P2 P3

1D Block-cyclic with P = 4

ai,j assigned to pk

𝑘 = 𝑗 % 𝑃

𝑗 = 0. . 7

• Mapping an M×N

matrix to P UEs...
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block with P×Q = 2×2

ai,j assigned to pk,l

𝑀 = 𝑁 = 8

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑄

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃

P0,0 P0,1

P1,0 P1,1

𝑖, 𝑗 = 0. . 7

• Mapping an M×N

matrix to P×Q UEs...
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block-cyclic with P×Q = 2×2

ai,j assigned to pk,l

𝑖, 𝑗 = 0. . 7

𝑀 = 𝑁 = 8

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃𝑄 % 𝑃

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑃𝑄 % 𝑄

P0,0 P0,1

P1,0 P1,1

• Mapping an M×N

matrix to P×Q UEs...



Uneven distribution

• For simplicity sake some codes don’t support an uneven 

distribution (e.g. 8x8 matrix over 3 UEs)

• Those that do often calculate an extra step for the number 

of rows held locally

- if (myrank < size - local_size * P) local_size++;

• To find my starting location determine how many of the 

chunks before me had an extra one and add this extra 

increment

• Can be a source of bugs!
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Distributed Array: Example
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Distributed Array: Example

• With entirety of matrix on each process, the symmetry is 

simple to deal with as only compute the diagonal and upper 

part, and copy upper elements into lower locations

1 2 3 4 5 6

7 8 9 A B

C D E F

G H I

J K

L

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

Local copying into 

opposite location

n

n

• Or could compute all elements, but duplication of work

• When we split the matrix up could just calculate 

upper elements and communicate to the lower 

elements

• But significant load imbalance!

P0

P1

P2



Distributed Array: Example

P0

P1

P2
1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

• Total number of points  to 

be explicitly calculated

• Base points per row to 

be explicitly calculated

n

n

f =
𝑛2 − 𝑛

2
+ 𝑛

𝑟 =
𝑓

𝑛

• Starting at the diagonal, start calculating 

r local points.

• If r is fractional (n is even), alternate between 

ceil(r) and floor(r) points for each row

f=21

r=3.5

• If the number of rows/2 is even, then in the second half of the matrix swap 

over ceil/floor



Distributed Array: Example

1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

3,0,2 4,0,3 8,1,2 9,1,3

E,2,4 F,2,5 H,3,4 I,3,5

5,4,0 A,4,1 6,5,0 B,5,1

From P0 

to P1

From P1 

to P2

From 

P2 to 

P0

Issue non-

blocking 

sends & 

register 

corresponding 

non-blocking 

receives

Each entry is the value as well as the 

global row and column (16 bytes per entry)

1 2 3 4

2 7 8 9

C D E F

D G H I

5 A J K

6 B K L

• Next we copy all local values (between 
locally held rows)

• Once we have done this wait for all 
communications to complete
• Overlapping the local data copy with the 

communications



Distributed Array: Example

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

3,0,2 4,0,3 8,1,2 9,1,3

Received by P1 from P0

E,2,4 F,2,5 H,3,4 I,3,5

Received by P2 from P1

5,4,0 A,4,1 6,5,0 B,5,1

Received by P0 from P2

Write data 

into the 

appropriate 

place

As each received data 

value also has 

associated its global 

row and column, it is 

trivial to place it in the 

appropriate location

• Whilst we still need communication of the values, we don’t 

need communication to coordinate which process 

calculates what

- At worst each process needs to communicate with every other 

process, but this is 1 single large message



Distributed Array – Comments

• Complex mappings between co-ordinate systems are often 

best-expressed by use of macros.

- aids readability and harder to make mistakes when writing

- no performance hit

• ScaLAPACK is an example of a library that is based 

around the 2D block-cyclic array distribution

- good for load balance and memory locality

• http://netlib.org/scalapack/slug/node75.html

• Distributed Array is often used with the Geometric 

Decomposition and SPMD patterns.
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Shared Data – Introduction
• Shared Data is an Implementation Strategy (or Supporting 

Structure).

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures



Shared Data: Context

• How does one explicitly manage shared data for a set of 

parallel tasks?

• Some parallel algorithm patterns handle shared data by 

extracting it from the task.

- Replication & Reduction with Task Parallelism

- Halo-swapping with Geometric Decomposition

• The Shared Data pattern is required when data cannot be  

extracted from the tasks.

- Such as when dependencies are neither removable or separable 



Shared Data: Context (2)
• Common attributes for problems that need the Shared Data

pattern:

- At least one data structure is accessed by multiple tasks in the course of 

the program’s execution

- At least one task modifies the shared data structure, and

- The tasks potentially need to use the modified value during the 

concurrent computation

• Most commonly assume this is 

with shared memory (threaded 

programming) but can be required 

with distributed memory too



Shared Data: Forces
• The results of the computation must be correct 

for any ordering of the tasks that could occur 

during the computation

• Explicitly managing shared data can incur 

parallel overhead, which must be kept small if 

the program is to run efficiently

d
a

ta

• Techniques for managing shared data 

can limit the number of tasks that can 

run concurrently, thereby potentially 

reducing scalability

• If the constructs used to manage 

shared data are not easy to 

understand, the program will be 

harder to maintain

d
a
ta

MPI + code

Process Process Process



Solution

• Ensure this pattern is needed

- By revisiting earlier decisions can we find an approach matching one of 

the algorithm strategy patterns without the need for shared data?

1. Make use of abstract data types (ADTs)

2. Implement appropriate concurrency-control protocol
- One-at-a-time execution

- Noninterfering sets of operations

- Readers/Writers

- Reducing the size of the critical section

- Nested locks

- Application-specific semantic relaxation

3. Review other considerations
- Memory synchronisation

- Task scheduling



Using an Abstract Data Type
• Consider the shared data type as an 

ADT with a fixed set of (possibly 

complex) operations on the data

- e.g. for a shared queue, you might have 

put, get, remove, isEmpty, getSize

• Each task will typically perform a sequence of these 

operations, along with operations on other (non-shared) data

• Operations should have the property that they each leave the 

data in a consistent, meaningful state

• Implementation of individual operations should be such that 

lower-level actions should not be visible to other tasks/UEs



Concurrency Control Protocols
• Once you have defined an ADT and its operations, we need to 

ensure that the operations provide the same results as if they 

were executed in serial.

• One-at-a-time execution

– The simplest approach, ensure 

operations indeed do execute in serial

– Uses a Critical Section

– Provided directly by language, or 

indirectly through mutex locks, 

synchronised blocks, OpenMP critical

– Usually straightforward to implement, but 

often overly conservative resulting in 

bottlenecks.

function operation1 {

synchronised {

……

}

}

function operation2 {

synchronised {

……

}

}

function operation3 {

synchronised {

……

}

}



Concurrency Control Protocols

• Noninterfering sets of operations

- Analyze the interference between 

operations, operation A interferes 

with operation B if A writes a variable 

that B reads or writes.

- Maintain disjoint sets of interfering 

operations, where operations in 

different sets do not interfere. 

- Within each disjoint set operations 

execute one at a time, but 

operations in different sets can 

proceed concurrently

function operation1 {

synchronised A {

……

}

}

function operation2 {

synchronised A {

……

}

}

function operation3 {

synchronised B {

……

}

}



Concurrency Control Protocols
• Readers/Writers

- If operations cannot be separated out but 

if some operations modify the data and 

others only read it then we can go from 

here.

- If A is a writer (both modify and read) but 

B is reader (only read) then A interferes 

with itself and B, but B interferes with 

nothing. 

- Therefore if one task is performing A then 

no other task should be able to execute A 

or B. But any number of Bs can execute 

concurrently. This is the basis for RW 

locks in pthreads

- Introduces some overhead, some thought 

needed by lock writers

function get {

synchronise read {

……

}

}

function put {

synchronise write {

……

}

}

function getSize {

synchronise read {

……

}

}



Concurrency Protocols

• Reducing the size of the critical 

section

- Don’t put the whole operation in a critical 

section

- Analyze the operations in more detail, does 

only one aspect cause interference?

- Very easy to get wrong, so be careful!

- Repeated locking and unlocking can be 

expensive

function operation1 {

synchronised {

……

}

}

function operation2 {

……

synchronised {

……

}

……

}

function operation3 {

……

synchronised {

……

}

……

synchronised {

……

}

}



Concurrency Protocols
• Nested locks

- A hybrid of noninterfering 

operations and reducing the CS 

size

- If you have almost non-interfering 

operations, an extra lock can be 

placed around just the interfering 

part of the operation

- If A reads and writes to x and y, and 

B reads and writes to y then strictly 

speaking these interfere. However, 

can place a lock around A’s y 

access to allow for additional 

concurrency

- Increased potential for deadlock

function operation1 {

synchronised A {

……

synchronised B {

……    

}

}

}

function operation2 {

synchronised B {

……

}

}

function operation3 {

synchronised B {

……

synchronised A {

……

}

}

}



Concurrency Protocols
• Application specific semantic 

relaxation

- e.g. partially replicate shared data, 

and don’t keep all of the copies 

completely in sync

- In some cases may involve a 

duplication of work (i.e. a number of 

tasks searching for an answer 

based upon the same starting 

conditions) but this can be more 

efficient than managing shared data 

to avoid this.

- Application logic means that conflict 

can never happen in reality

function operation1 {

……

}

function operation2 {

……

}

function operation3 {

……

}



Other considerations
• Memory synchronisation

- Caching and compiler optimisation can result in unexpected behaviour.

- I.e. a stale value might be read from a cache or a new value not flushed to 

memory. 

- In OpenMP there is a flush directive which is invoked by several other 

directives (such as after a for, critical, single, barrier.)

- In Java memory is explicitly synchronised when entering and leaving 

synchronised blocks, when locking and unlocking locks and all variables 

marked with volatile.

- In C or FORTRAN have the volatile keyword too, often needed!

• Task scheduling
- Will a task be idle, waiting for access to some shared data?

- If so can we assign tasks to UEs in such a way that minimises this?

- Or can we assign multiple tasks to UEs such that there is always one that is not 

waiting and doing some work?



Shared data – Summary

• First consider if you really have to use this pattern.

• Make use of Abstract Datatypes.

• Carefully consider the appropriate concurrency protocol.

- usually a trade off between simplicity and performance

- can I do other things (such as clever task scheduling) to minimise 

the impact this will have?



Shared Queue – Introduction

• How can concurrently-executing UEs safely share a 

queue data structure?

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures• Many parallel 

algorithms requires a 

queue that is to be 

shared among UEs.

• An example we’ve 

already talked about 

is the “task pool” in 

the Master/Worker 

pattern.



Shared Queue – Solution

• The queue is a FIFO data type.

p
u

t

ta
k

e

• Often implemented as a linked list.



Effect of Concurrency-Control Protocol

• Most of the important forces relate to the 

choice of concurrency-control protocol:

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation

Simple but slow

Complex but fast



Shared Queue: Forces

• Simple concurrency-control protocols provide greater clarity of abstraction 

and make it easier for the programmer to verify that the shared queue has 

been correctly implemented

- Aim for clarity first, then optimise

• Concurrency-control protocols that encompass too much of the shared 

queue in a single synchronisation construct increase the chances UEs will 

remain blocked waiting to access the queue and will limit concurrency

• A concurrency-control protocol finely tuned to the queue and how it will be 

used increases the available concurrency, at the cost of more complicated, 

more error-prone synchronisation constructs



Solution 
• Ideally the shared queue would be implemented as part of the 

target programming language

- e.g. Java has an implementation available in java.util.concurrent

• No provided mechanism in common HPC languages (MPI, 

OpenMP)

• Most common use of shared queue is with shared memory

• Can be implemented in message passing by having 

the queue owned by one process, and putting and 

taking from the queue implemented by sending 

messages to and from the owner process



Solution

Apply the shared data pattern

• Define the ADT

• Choose the concurrency protocol



Defining the ADT

• The operations:

- Put (enqueue)

- Take (dequeue)

- Other operations are possible, e.g. peek, takeall, clear, isEmpty

• Details:

- What do you do when a queue is empty?

• Block and wait for something to arrive

- Could be used in Master-Worker with poison pill approach

• Non-blocking queue: Return null or special value



Concurrency control protocol

• Implementing a shared queue can be tricky

- but well-written, it can be re-used widely

• Choice of protocols

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation



One at a time: Non-blocking
public class SharedQueue1 { 

class Node { //inner class defines list nodes { 

Object task; 

Node next; 

Node(Object task) {this.task = task; next = null;} 

} 

private Node head = new Node(null); //dummy node 

private Node last = head; 

public synchronized void put(Object task) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; 

last = p; 

} 

public synchronized Object take() { 

//returns first task in queue or null if queue is empty 

Object task = null; 

if (!isEmpty()) { 

Node first = head.next; 

task = first.task; 

first.task = null; 

head = first; 

} 

return task; 

} 

private boolean isEmpty(){return head.next == null;} }



OpenMP version

• A simple queue of ints, for illustration purposes:

void put (int i){

#pragma omp critical

…

#pragma omp end critical

}

int take(){

#pragma omp critical

…

#pragma omp end critical

}



One at a time: Block on queue empty

• Wait will release lock

- Waits until notified

• notifyAll wakes all 

threads

- In tern as lock on 

take method

• Pthreads has condition 

variables

- Wait and signal

public class SharedQueue2 { 

class Node { 

Object task; 

Node next; 

Node(Object task) {this.task = task; next = null;} 

} 

private Node head = new Node(null); 

private Node last = head; 

public synchronized void put(Object task) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; 

last = p; 

notifyAll(); 

} 

public synchronized Object take() { 

//returns first task in queue, waits if queue is empty 

Object task = null; 

while (isEmpty()) { 

try{wait();}catch(InterruptedException ignore){}

} 

Node first = head.next; 

task = first.task; 

first.task = null; 

head = first; 

return task; } }



public class SharedQueue1 { 

class Node { //inner class defines list nodes { 

Object task; 

Node next; 

Node(Object task) {this.task = task; next = null;} 

} 

private Node head = new Node(null); //dummy node 

private Node last = head; 

public synchronized void put(Object task) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; 

last = p; 

} 

public synchronized Object take() { 

//returns first task in queue or null if queue is empty 

Object task = null; 

if (!isEmpty()) { 

Node first = head.next; 

task = first.task; 

first.task = null; 

head = first; 

} 

return task; 

} 

private boolean isEmpty(){return head.next == null;} }



Non-interfering operations

• Put and take are 

independent as do not 

access the same variables

• Therefore use different locks

• Only works for non blocking

• Could be two different 

mutexes in pthreads

public class SharedQueue3 { 

class Node { 

Object task; 

Node next; 

Node(Object task) {this.task = task; next = null;} 

} 

private Node head = new Node(null); 

private Node last = head; 

private Object putLock = new Object(); 

private Object takeLock = new Object(); 

public void put(Object task) { 

synchronized(putLock) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; last = p; 

} 

} 

public Object take() { 

Object task = null; 

synchronized(takeLock) { 

if (!isEmpty()) { 

Node first = head.next; 

task = first.task; 

first.task = null; 

head = first; 

} 

} 
return task; } }



OpenMP version

• A simple queue of ints, for illustration purposes:

void put (int i){

#pragma omp critical(put)

…

#pragma omp end critical(put)

}

int take(){

#pragma omp critical (take)

…

#pragma omp end critical (take)

}



Nested locks
pubic class SharedQueue4 { 

class Node { 

Object task; Node next;

Node(Object task) {

this.task = task; next = null;} 

} 

private Node head = new Node(null); 

private Node last = head; 

private int w; 

private Object putLock = new Object(); 

private Object takeLock = new Object(); 

public void put(0bject task) { 

synchronized(putLock) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; last = p;

if(w>0) putLock.notify(); 

} 

}

public Object take() { 

Object task = null; 

synchronized(takeLock) { 

//returns first task in queue, waits if queue is empty 

while (isEmpty()) { 

try { synchronized(putLock){ w++; putLock.wait();w--; } 

} catch(InterruptedException error){assert false;} 

} 

Node first = head.next; 

task = first.task; 

first.task = null; head = first; 

} 

return task; } }

• Blocking on 

empty

• Waits on  the 

putLock lock

• Need to be very 

careful to avoid 

deadlock



Readers and writers
private Node last = head; 

Rwlock rw_lock=new Rwlock(); 

public void put(Object task) { 

rw_lock.writeLock();  

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

last.next = p; last = p; 

rw_lock.release();

} 

public Object viewlast() { 

Object task = null; 

rw_lock.readLock();

if (!isEmpty()) { 

task=last.task;

} 

rw_lock.release();
return task; } }

• Here last is used in 

both the functions

- But one writes whilst 

the other reads

- The reader can 

operate concurrently

- Only one writer 

exclusively

• An example of this is 

rwlocks in pthreads



Shrinking the critical section
private Node last = head; 

Rwlock rw_lock=new Rwlock(); 

public void put(Object task) { 

assert task != null: "Cannot insert null task"; 

Node p = new Node(task); 

rw_lock.writeLock(); 

last.next = p; last = p; 

rw_lock.release(); 

} 

public Object viewlast() { 

Object task = null; 

rw_lock.readLock(); 

if (!isEmpty()) { 

task=last.task;

} 

rw_lock.release();
return task; } }



Distributed shared queues

• One central queue can be a bottleneck

- Can we split this up so there is a queue per UE and distribute the 

contents?

• If my local queue becomes empty then a take might 

“steal” an element from a neighbour’s queue

• If my local queue becomes full then a put might add the 

element to a neighbour’s queue

• E.g. Allocating tasks to each UE to execute, queue these 

up and then allow for work stealing once completed.



Shared Queue – Related Patterns

• Shared Data

- Shared Queue pattern is an instance of Shared Data pattern

• Master/Worker

- Shared Queue pattern is often used to represent the task queues in 

algorithms that use the Master/Worker pattern

• Fork/Join pattern:

- thread‐pool‐based implementation of Fork/Join pattern is supported 

by this pattern



Shared Queue – Summary

• A shared queue encapsulates the synchronisation 

required inside an abstract data type.

• Examples follow an object-orientated paradigm, but you 
can “encapsulate” internal put and take routines.

• Different implementations can vary in performance and 

complexity.

• Shared queue is a key component of various other 

parallel patterns.


