
Parallel Design

Patterns

Implementation Strategies – Distributed Array,

Shared Data/Queue

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Distributed Array – Introduction

• Distributed Array is an Implementation Strategy that

comes under the Data Structures sub-group.

3

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures• Arrays often need

to be partitioned

between multiple

UEs.

• How can this be

done so that the

program is both

readable and

efficient?

Distributed Array – Introduction

• Large arrays are fundamental data structures in scientific

computing problems.

• Most systems have memory access times that vary

substantially depending on which UE is accessing a

particular array element.

- even if that system supports a global address space

- the challenge is to ensure that data elements are “nearby” at the

right times during the computation

• For distributed systems, must explicitly distribute data.

• For NUMA systems, no need to split the data, but it’s still

desirable to have the right memory “nearby”.

4

Distributed Array – Forces

• Load Balance

• Effective Memory Management

- make good use of the cache

• Clarity of Solution

- aim to have a clear mapping between local and global arrays

• The “solution” is the mapping between local and global

arrays.

5

An 8×8 Array

6

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

• Mapping an M×N matrix to

P UEs...

- 1D block: element ai,j is

assigned to pk where

- 1D block-cyclic

• Mapping an M×N matrix to

P×Q UEs...

- 2D block: element ai,j is

assigned to pk,l where

- 2D block-cyclic

ڿ ⋯ ≡ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ⋯

ہ ⋯ ≡ 𝑓𝑙𝑜𝑜𝑟 ⋯

7

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

1D Block with P = 4

P0 P1 P2 P3

ai,j assigned to pk

𝑘 = ہ Τ𝑗 ڿ Τ𝑀 𝑃

𝑀 = 8

𝑗 = 0. . 7

• Mapping an M×N

matrix to P UEs...

8

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

P0 P1 P2 P3 P0 P1 P2 P3

1D Block-cyclic with P = 4

ai,j assigned to pk

𝑘 = 𝑗 % 𝑃

𝑗 = 0. . 7

• Mapping an M×N

matrix to P UEs...

9

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block with P×Q = 2×2

ai,j assigned to pk,l

𝑀 = 𝑁 = 8

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑄

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃

P0,0 P0,1

P1,0 P1,1

𝑖, 𝑗 = 0. . 7

• Mapping an M×N

matrix to P×Q UEs...

10

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block-cyclic with P×Q = 2×2

ai,j assigned to pk,l

𝑖, 𝑗 = 0. . 7

𝑀 = 𝑁 = 8

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃𝑄 % 𝑃

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑃𝑄 % 𝑄

P0,0 P0,1

P1,0 P1,1

• Mapping an M×N

matrix to P×Q UEs...

Uneven distribution

• For simplicity sake some codes don’t support an uneven

distribution (e.g. 8x8 matrix over 3 UEs)

• Those that do often calculate an extra step for the number

of rows held locally

- if (myrank < size - local_size * P) local_size++;

• To find my starting location determine how many of the

chunks before me had an extra one and add this extra

increment

• Can be a source of bugs!

11

Distributed Array: Example

12

Distributed Array: Example

• With entirety of matrix on each process, the symmetry is

simple to deal with as only compute the diagonal and upper

part, and copy upper elements into lower locations

1 2 3 4 5 6

7 8 9 A B

C D E F

G H I

J K

L

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

Local copying into

opposite location

n

n

• Or could compute all elements, but duplication of work

• When we split the matrix up could just calculate

upper elements and communicate to the lower

elements

• But significant load imbalance!

P0

P1

P2

Distributed Array: Example

P0

P1

P2
1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

• Total number of points to

be explicitly calculated

• Base points per row to

be explicitly calculated

n

n

f =
𝑛2 − 𝑛

2
+ 𝑛

𝑟 =
𝑓

𝑛

• Starting at the diagonal, start calculating

r local points.

• If r is fractional (n is even), alternate between

ceil(r) and floor(r) points for each row

f=21

r=3.5

• If the number of rows/2 is even, then in the second half of the matrix swap

over ceil/floor

Distributed Array: Example

1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

3,0,2 4,0,3 8,1,2 9,1,3

E,2,4 F,2,5 H,3,4 I,3,5

5,4,0 A,4,1 6,5,0 B,5,1

From P0

to P1

From P1

to P2

From

P2 to

P0

Issue non-

blocking

sends &

register

corresponding

non-blocking

receives

Each entry is the value as well as the

global row and column (16 bytes per entry)

1 2 3 4

2 7 8 9

C D E F

D G H I

5 A J K

6 B K L

• Next we copy all local values (between
locally held rows)

• Once we have done this wait for all
communications to complete
• Overlapping the local data copy with the

communications

Distributed Array: Example

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

3,0,2 4,0,3 8,1,2 9,1,3

Received by P1 from P0

E,2,4 F,2,5 H,3,4 I,3,5

Received by P2 from P1

5,4,0 A,4,1 6,5,0 B,5,1

Received by P0 from P2

Write data

into the

appropriate

place

As each received data

value also has

associated its global

row and column, it is

trivial to place it in the

appropriate location

• Whilst we still need communication of the values, we don’t

need communication to coordinate which process

calculates what

- At worst each process needs to communicate with every other

process, but this is 1 single large message

Distributed Array – Comments

• Complex mappings between co-ordinate systems are often

best-expressed by use of macros.

- aids readability and harder to make mistakes when writing

- no performance hit

• ScaLAPACK is an example of a library that is based

around the 2D block-cyclic array distribution

- good for load balance and memory locality

• http://netlib.org/scalapack/slug/node75.html

• Distributed Array is often used with the Geometric

Decomposition and SPMD patterns.

17

Shared Data – Introduction
• Shared Data is an Implementation Strategy (or Supporting

Structure).

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures

Shared Data: Context

• How does one explicitly manage shared data for a set of

parallel tasks?

• Some parallel algorithm patterns handle shared data by

extracting it from the task.

- Replication & Reduction with Task Parallelism

- Halo-swapping with Geometric Decomposition

• The Shared Data pattern is required when data cannot be

extracted from the tasks.

- Such as when dependencies are neither removable or separable

Shared Data: Context (2)
• Common attributes for problems that need the Shared Data

pattern:

- At least one data structure is accessed by multiple tasks in the course of

the program’s execution

- At least one task modifies the shared data structure, and

- The tasks potentially need to use the modified value during the

concurrent computation

• Most commonly assume this is

with shared memory (threaded

programming) but can be required

with distributed memory too

Shared Data: Forces
• The results of the computation must be correct

for any ordering of the tasks that could occur

during the computation

• Explicitly managing shared data can incur

parallel overhead, which must be kept small if

the program is to run efficiently

d
a

ta

• Techniques for managing shared data

can limit the number of tasks that can

run concurrently, thereby potentially

reducing scalability

• If the constructs used to manage

shared data are not easy to

understand, the program will be

harder to maintain

d
a
ta

MPI + code

Process Process Process

Solution

• Ensure this pattern is needed

- By revisiting earlier decisions can we find an approach matching one of

the algorithm strategy patterns without the need for shared data?

1. Make use of abstract data types (ADTs)

2. Implement appropriate concurrency-control protocol
- One-at-a-time execution

- Noninterfering sets of operations

- Readers/Writers

- Reducing the size of the critical section

- Nested locks

- Application-specific semantic relaxation

3. Review other considerations
- Memory synchronisation

- Task scheduling

Using an Abstract Data Type
• Consider the shared data type as an

ADT with a fixed set of (possibly

complex) operations on the data

- e.g. for a shared queue, you might have

put, get, remove, isEmpty, getSize

• Each task will typically perform a sequence of these

operations, along with operations on other (non-shared) data

• Operations should have the property that they each leave the

data in a consistent, meaningful state

• Implementation of individual operations should be such that

lower-level actions should not be visible to other tasks/UEs

Concurrency Control Protocols
• Once you have defined an ADT and its operations, we need to

ensure that the operations provide the same results as if they

were executed in serial.

• One-at-a-time execution

– The simplest approach, ensure

operations indeed do execute in serial

– Uses a Critical Section

– Provided directly by language, or

indirectly through mutex locks,

synchronised blocks, OpenMP critical

– Usually straightforward to implement, but

often overly conservative resulting in

bottlenecks.

function operation1 {

synchronised {

……

}

}

function operation2 {

synchronised {

……

}

}

function operation3 {

synchronised {

……

}

}

Concurrency Control Protocols

• Noninterfering sets of operations

- Analyze the interference between

operations, operation A interferes

with operation B if A writes a variable

that B reads or writes.

- Maintain disjoint sets of interfering

operations, where operations in

different sets do not interfere.

- Within each disjoint set operations

execute one at a time, but

operations in different sets can

proceed concurrently

function operation1 {

synchronised A {

……

}

}

function operation2 {

synchronised A {

……

}

}

function operation3 {

synchronised B {

……

}

}

Concurrency Control Protocols
• Readers/Writers

- If operations cannot be separated out but

if some operations modify the data and

others only read it then we can go from

here.

- If A is a writer (both modify and read) but

B is reader (only read) then A interferes

with itself and B, but B interferes with

nothing.

- Therefore if one task is performing A then

no other task should be able to execute A

or B. But any number of Bs can execute

concurrently. This is the basis for RW

locks in pthreads

- Introduces some overhead, some thought

needed by lock writers

function get {

synchronise read {

……

}

}

function put {

synchronise write {

……

}

}

function getSize {

synchronise read {

……

}

}

Concurrency Protocols

• Reducing the size of the critical

section

- Don’t put the whole operation in a critical

section

- Analyze the operations in more detail, does

only one aspect cause interference?

- Very easy to get wrong, so be careful!

- Repeated locking and unlocking can be

expensive

function operation1 {

synchronised {

……

}

}

function operation2 {

……

synchronised {

……

}

……

}

function operation3 {

……

synchronised {

……

}

……

synchronised {

……

}

}

Concurrency Protocols
• Nested locks

- A hybrid of noninterfering

operations and reducing the CS

size

- If you have almost non-interfering

operations, an extra lock can be

placed around just the interfering

part of the operation

- If A reads and writes to x and y, and

B reads and writes to y then strictly

speaking these interfere. However,

can place a lock around A’s y

access to allow for additional

concurrency

- Increased potential for deadlock

function operation1 {

synchronised A {

……

synchronised B {

……

}

}

}

function operation2 {

synchronised B {

……

}

}

function operation3 {

synchronised B {

……

synchronised A {

……

}

}

}

Concurrency Protocols
• Application specific semantic

relaxation

- e.g. partially replicate shared data,

and don’t keep all of the copies

completely in sync

- In some cases may involve a

duplication of work (i.e. a number of

tasks searching for an answer

based upon the same starting

conditions) but this can be more

efficient than managing shared data

to avoid this.

- Application logic means that conflict

can never happen in reality

function operation1 {

……

}

function operation2 {

……

}

function operation3 {

……

}

Other considerations
• Memory synchronisation

- Caching and compiler optimisation can result in unexpected behaviour.

- I.e. a stale value might be read from a cache or a new value not flushed to

memory.

- In OpenMP there is a flush directive which is invoked by several other

directives (such as after a for, critical, single, barrier.)

- In Java memory is explicitly synchronised when entering and leaving

synchronised blocks, when locking and unlocking locks and all variables

marked with volatile.

- In C or FORTRAN have the volatile keyword too, often needed!

• Task scheduling
- Will a task be idle, waiting for access to some shared data?

- If so can we assign tasks to UEs in such a way that minimises this?

- Or can we assign multiple tasks to UEs such that there is always one that is not

waiting and doing some work?

Shared data – Summary

• First consider if you really have to use this pattern.

• Make use of Abstract Datatypes.

• Carefully consider the appropriate concurrency protocol.

- usually a trade off between simplicity and performance

- can I do other things (such as clever task scheduling) to minimise

the impact this will have?

Shared Queue – Introduction

• How can concurrently-executing UEs safely share a

queue data structure?

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures• Many parallel

algorithms requires a

queue that is to be

shared among UEs.

• An example we’ve

already talked about

is the “task pool” in

the Master/Worker

pattern.

Shared Queue – Solution

• The queue is a FIFO data type.

p
u

t

ta
k

e

• Often implemented as a linked list.

Effect of Concurrency-Control Protocol

• Most of the important forces relate to the

choice of concurrency-control protocol:

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation

Simple but slow

Complex but fast

Shared Queue: Forces

• Simple concurrency-control protocols provide greater clarity of abstraction

and make it easier for the programmer to verify that the shared queue has

been correctly implemented

- Aim for clarity first, then optimise

• Concurrency-control protocols that encompass too much of the shared

queue in a single synchronisation construct increase the chances UEs will

remain blocked waiting to access the queue and will limit concurrency

• A concurrency-control protocol finely tuned to the queue and how it will be

used increases the available concurrency, at the cost of more complicated,

more error-prone synchronisation constructs

Solution
• Ideally the shared queue would be implemented as part of the

target programming language

- e.g. Java has an implementation available in java.util.concurrent

• No provided mechanism in common HPC languages (MPI,

OpenMP)

• Most common use of shared queue is with shared memory

• Can be implemented in message passing by having

the queue owned by one process, and putting and

taking from the queue implemented by sending

messages to and from the owner process

Solution

Apply the shared data pattern

• Define the ADT

• Choose the concurrency protocol

Defining the ADT

• The operations:

- Put (enqueue)

- Take (dequeue)

- Other operations are possible, e.g. peek, takeall, clear, isEmpty

• Details:

- What do you do when a queue is empty?

• Block and wait for something to arrive

- Could be used in Master-Worker with poison pill approach

• Non-blocking queue: Return null or special value

Concurrency control protocol

• Implementing a shared queue can be tricky

- but well-written, it can be re-used widely

• Choice of protocols

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation

One at a time: Non-blocking
public class SharedQueue1 {

class Node { //inner class defines list nodes {

Object task;

Node next;

Node(Object task) {this.task = task; next = null;}

}

private Node head = new Node(null); //dummy node

private Node last = head;

public synchronized void put(Object task) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p;

last = p;

}

public synchronized Object take() {

//returns first task in queue or null if queue is empty

Object task = null;

if (!isEmpty()) {

Node first = head.next;

task = first.task;

first.task = null;

head = first;

}

return task;

}

private boolean isEmpty(){return head.next == null;} }

OpenMP version

• A simple queue of ints, for illustration purposes:

void put (int i){

#pragma omp critical

…

#pragma omp end critical

}

int take(){

#pragma omp critical

…

#pragma omp end critical

}

One at a time: Block on queue empty

• Wait will release lock

- Waits until notified

• notifyAll wakes all

threads

- In tern as lock on

take method

• Pthreads has condition

variables

- Wait and signal

public class SharedQueue2 {

class Node {

Object task;

Node next;

Node(Object task) {this.task = task; next = null;}

}

private Node head = new Node(null);

private Node last = head;

public synchronized void put(Object task) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p;

last = p;

notifyAll();

}

public synchronized Object take() {

//returns first task in queue, waits if queue is empty

Object task = null;

while (isEmpty()) {

try{wait();}catch(InterruptedException ignore){}

}

Node first = head.next;

task = first.task;

first.task = null;

head = first;

return task; } }

public class SharedQueue1 {

class Node { //inner class defines list nodes {

Object task;

Node next;

Node(Object task) {this.task = task; next = null;}

}

private Node head = new Node(null); //dummy node

private Node last = head;

public synchronized void put(Object task) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p;

last = p;

}

public synchronized Object take() {

//returns first task in queue or null if queue is empty

Object task = null;

if (!isEmpty()) {

Node first = head.next;

task = first.task;

first.task = null;

head = first;

}

return task;

}

private boolean isEmpty(){return head.next == null;} }

Non-interfering operations

• Put and take are

independent as do not

access the same variables

• Therefore use different locks

• Only works for non blocking

• Could be two different

mutexes in pthreads

public class SharedQueue3 {

class Node {

Object task;

Node next;

Node(Object task) {this.task = task; next = null;}

}

private Node head = new Node(null);

private Node last = head;

private Object putLock = new Object();

private Object takeLock = new Object();

public void put(Object task) {

synchronized(putLock) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p; last = p;

}

}

public Object take() {

Object task = null;

synchronized(takeLock) {

if (!isEmpty()) {

Node first = head.next;

task = first.task;

first.task = null;

head = first;

}

}
return task; } }

OpenMP version

• A simple queue of ints, for illustration purposes:

void put (int i){

#pragma omp critical(put)

…

#pragma omp end critical(put)

}

int take(){

#pragma omp critical (take)

…

#pragma omp end critical (take)

}

Nested locks
pubic class SharedQueue4 {

class Node {

Object task; Node next;

Node(Object task) {

this.task = task; next = null;}

}

private Node head = new Node(null);

private Node last = head;

private int w;

private Object putLock = new Object();

private Object takeLock = new Object();

public void put(0bject task) {

synchronized(putLock) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p; last = p;

if(w>0) putLock.notify();

}

}

public Object take() {

Object task = null;

synchronized(takeLock) {

//returns first task in queue, waits if queue is empty

while (isEmpty()) {

try { synchronized(putLock){ w++; putLock.wait();w--; }

} catch(InterruptedException error){assert false;}

}

Node first = head.next;

task = first.task;

first.task = null; head = first;

}

return task; } }

• Blocking on

empty

• Waits on the

putLock lock

• Need to be very

careful to avoid

deadlock

Readers and writers
private Node last = head;

Rwlock rw_lock=new Rwlock();

public void put(Object task) {

rw_lock.writeLock();

assert task != null: "Cannot insert null task";

Node p = new Node(task);

last.next = p; last = p;

rw_lock.release();

}

public Object viewlast() {

Object task = null;

rw_lock.readLock();

if (!isEmpty()) {

task=last.task;

}

rw_lock.release();
return task; } }

• Here last is used in

both the functions

- But one writes whilst

the other reads

- The reader can

operate concurrently

- Only one writer

exclusively

• An example of this is

rwlocks in pthreads

Shrinking the critical section
private Node last = head;

Rwlock rw_lock=new Rwlock();

public void put(Object task) {

assert task != null: "Cannot insert null task";

Node p = new Node(task);

rw_lock.writeLock();

last.next = p; last = p;

rw_lock.release();

}

public Object viewlast() {

Object task = null;

rw_lock.readLock();

if (!isEmpty()) {

task=last.task;

}

rw_lock.release();
return task; } }

Distributed shared queues

• One central queue can be a bottleneck

- Can we split this up so there is a queue per UE and distribute the

contents?

• If my local queue becomes empty then a take might

“steal” an element from a neighbour’s queue

• If my local queue becomes full then a put might add the

element to a neighbour’s queue

• E.g. Allocating tasks to each UE to execute, queue these

up and then allow for work stealing once completed.

Shared Queue – Related Patterns

• Shared Data

- Shared Queue pattern is an instance of Shared Data pattern

• Master/Worker

- Shared Queue pattern is often used to represent the task queues in

algorithms that use the Master/Worker pattern

• Fork/Join pattern:

- thread‐pool‐based implementation of Fork/Join pattern is supported

by this pattern

Shared Queue – Summary

• A shared queue encapsulates the synchronisation

required inside an abstract data type.

• Examples follow an object-orientated paradigm, but you
can “encapsulate” internal put and take routines.

• Different implementations can vary in performance and

complexity.

• Shared queue is a key component of various other

parallel patterns.

