Enabling multi-node MPI parallelisation of the
LISFLOQOD flood inundation model

ARCHER eCSE12-17

Dr. Arno Proeme (a.proeme@epcc.ed.ac.uk)
EPCC, University of Edinburgh

Dr. Declan Valters (British Geological Survey)
Prof. Simon Mudd (Geosciences, University of Edinburgh)

CPCC



mailto:a.proeme@epcc.ed.ac.uk

Landscape evolution modelling & HPC

Landscape evolution modelling community new to HPC
Geomorphology (e.g. erosion, sedimentation, etc.)
Hydrology (river flow, flooding, etc.)

Growing availability of increasingly higher-resolution data
Topographic data: e.g. LIDAR surface elevation maps, sub-metre resolution
Weather/climate data: sensor data (e.g. rainfall) or simulation outputs

Great potential from using HPC and high-resolution data:
More spatially & temporally detailed processes
Higher accuracy
Larger domains
Shorter time to solution (critical for impact of short-term forecasts)
Most numerical landscape evolution modelling software

not ready to use HPC (limited parallelisation)

epcc 2




(CAESAR-)LISFLOOD

Hydrodynamic model

Simulates flooding in river catchments and floodplains,
erosion & sediment transport processes (optional)

Can simulate timescales of hours to 100s of years (geomorphology)

Enables flood inundation modelling & flood risk research
NERC strategic research area

Previously implemented in HAIL-CAESAR by D. Valters
(http://dvalts.io/HAIL-CAESAR/)
OpenMP-parallelised — limited to single node

Want to enable multi-node parallelisation of HAIL-CAESAR

epcc :



http://dvalts.io/HAIL-CAESAR/

START

Parameter
file

‘ DEM ]—

initialize
model

—i Rainfall file

!

catchment
water inputs

!

flow routing
(LISFLOOD)

!

water depth
update

!

increment
counters

erosion
routines

no

!

water
flux out

!

slope
processes

!

write to
output files

timeseries

‘

file

has end
time been
reached?

N\

OutpPuT
RASTERS
water depth,

elevation,
erosion,
grainsize

Stop

HAIL-CAESAR

From: Valters, D. A (2017). Modelling catchment sensitivity to
rainfall resolution and erosional parameterisation in
simulations of flash floods in the UK. PhD Thesis, University of
Manchester.

Simplified outline of HAIL-CAESAR program flow:
- Grey shaded boxes = OpenMP-parallelised code
- Rounded rectangles = input & output files

DEM = Digital Elevation Model (surface elevation, i.e.
topography data)

- Focus on multi-node parallelisation of
hydrology, i.e.
- flow routing (LISFLOOD)
- water depth update
- (water flux out)

- Erosion routines secondary
- no real additional complexity




HAIL-CAESAR

2D cellular automaton / stencil code:

Elevation, water depth, other real-valued physical quantities (e.g.
fluxes) defined for each cell on a 2D grid

Fixed update rule: new value of each main cell quantity depends
only on old value and four-point neighbour values (East, West,
North, South)

Solves a simplified version of the Saint-Venant shallow water
equations for 2D depth-averaged flow, calculating water discharge
based on local gradients of water depth and bed elevation from
neighbouring grid cells

takes into account e.g. surface & subsurface discharge, “soil moisture
store”, efc.

epcc 5




HAIL-CAESAR hydrology

water depth evolution for synthetic test case: persistent rainfall on central cell with flow routing




Realistic Digital Terrain

Boscastle River Valency (Cornwall): 12km?2, 1m? resolution




Multi-node parallelisation of LISFLOOD

- Regular grid stencil codes very well defined as a class of
problems, and parallelisation approaches well established
- domain decomposition + halo exchange

- Should be able to leverage existing solution instead of
creating (n+17) reimplementation

- Library, DSL, ...

- Considerations / requirements:

- Should be based on MPI parallelism

- Should incorporate dynamic load balancing (load distribution is
initially predictable but can change drastically due to flooding or
gradually over geomorphological timescales)

epcc 8




LibGeoDecomp (http:/libgeodecomp.orgy/)

C++ framework for parallelisation mainly of stencil codes
Pure C++, not a DSL, customisable/extendable for Multiphysics
Uses Boost library

MPI| based, alternatively also supports:
OpenMP (single shared-memory node)
or CUDA (single GPU)
or HPX (also developed by Stellar group - http://stellar-group.org/)

Handles domain decomposition, dynamic load balancing

Recursive bisection, Hilbert & zip-zag space-filling curves,
Scotch graph-based partitioning, ...

epcc 9



http://libgeodecomp.org/
http://stellar-group.org/

LibGeoDecomp (http://libgeodecomp.org/)

Optimisations:
Overlap computation & communication (latency hiding)

Fast iteration through Arrays of Structs (actually stored as SoAs)
using instruction set-specific vectorization templates in LibFlatArray
(http://www.libgeodecomp.org/libflatarray.html)

Tested on a number of large HPC systems, possible to
obtain good efficiency on (tens of) thousands of cores

MPI [O-based checkpointing functionality

Some parallel 10 including for visualisation
Vislt BOV & Silo formats

epcc :



http://libgeodecomp.org/
http://www.libgeodecomp.org/libflatarray.html

HAIL-CAESAR original

- Read in elevation data from DEM file
- Store elevation and water depth grids in 2D double arrays

- LISFLOQD algorithm loops over arrays
(OpenMP-parallel if enabled)

- Done ©

CPCC i



HAIL-CAESAR LibGeoDecomp port

- Define custom Cell class:
- Contains all member data types for each grid cell
- (e.g. double elevation, double water depth)
- Must contain update() function
- this is called by LibGeoDecomp during each time step
- Need enum member type to distinguish between different cell types
- (e.g. boundaries for application of boundary conditions)

- Define custom Initializer class:
- Must extend a suitable LibGeoDecomp base Initializer class

- Should define a grid() function, and use LibGeoDecomp’s
coordinate system syntax to initialise all grid cells (for serial
execution) or only those cells in each rank’s subgrid (for parallel
execution)

epcc :




HAIL-CAESAR LibGeoDecomp port

- Declare an instance of a suitable LibGeoDecomp Simulator
(serial, parallel, ...) and pass it instances of your custom
Initializer and a suitable LoadBalancer

- Commit LibGeoDecomp’s internal MPI Typemaps to
MPI_COMM_WORLD by calling initializeMaps()

- Generate an MPI| Typemap for your Cell class,
and also commit this to MPI_COMM_WORLD

- see next slide

- Add any Writers to your Simulator, then let it run

epcc .



LibGeoDecomp and Typemap Generation

- If you want to run in parallel with MPI you must generate
code and a header file describing an MPI Typemap for your
custom Cell class

- This must follow LibGeoDecomp’s conventions

- Use doxygen and scripts supplied by LibGeoDecomp (in
tools/typemapgenerator):
- Make sure your Cell class declares Typemaps as a friend class
- Run doxygen in your application dir to generate xml for your code

- Run typemapgenerator.rb (Ruby) script that parses xml and writes
typemaps.h & .cpp

- Make sure these are compiled and included when you build your code

CPCC ‘




Using LibGeoDecomp

- Heavily templated, multi-layered abstractions
- Not easy to understand how everything fits together

- APl documentation available as reference (but not a good
starting point)

- Mini-application examples and unit tests help
- These only cover a few usage scenarios / functionality aspects

- Doing anything slightly different, needed to port existing
applications, immediately requires understanding a lot of the
underlying interlocking complexity

epcc .



Using LibGeoDecomp

MPI| Typemap generator
Not obvious from outset that needed! (discoverability curve)

Encountered erronous typemap generation for enums (causing
mini-application example code not to work) — found workaround

Not straightforward to efficiently read in and initialise
parallel simulation with real elevation data (DEM file)

Each rank could read same file, but for large numbers of ranks this
will hit the filesystem hard serialising on single file,
bottlenecking/throttling the application strongly — need workaround

Solution: read in file on rank 0 to initialise whole grid, write to file as
MPI 10 snapshot, read in MPI 10 snapshot to initialise each subgrid
in parallel

epcc .




Results & follow on work

Scaling results on ARCHER for realistic DEMs of varying
resolutions/sizes to follow in eCSE report

Ported HAIL-CAESAR LibGeoDecomp code will be
available on GitHub (http://dvalts.io/HAIL-CAESAR/ or
linked to from there and from ARCHER website)

Simple synthetic test cases not available in original HAIL-
CAESAR provide valuable debugging tool and insight into
LISFLOOD algorithm (extendable for erosion and
additional processes)

epcc .



http://dvalts.io/HAIL-CAESAR/

Follow on work

Introducing parallel netCDF-based 10 in LibGeoDecomp
and thereby into HAIL-CAESAR

Paves the way for efficient ingest of self-describing high-resolution
data, for initialisation and for ‘steering’ by feeding HPC simulation
live flooding data to improve short-term acute forecasting

Equally enables efficient periodic output and storage of quantities
(time series) of interest

Makes parallel netCDF |O functionality available to other
application developers using LibGeoDecomp

epcc .



