
Warwick RSE

“The Angry Penguin“, used under creative commons licence
from Swantje Hess and Jannis Pohlmann.

EIS-2 - A general purpose, high
performance input deck and maths parser

Chris Brady, University of Warwick

This work was funded under the embedded CSE programme
of the ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk)

EIS-2
• Library to control a code from a structured text file using

rich mathematical notation

• Intended to replace the existing system in the EPOCH
plasma physics code

• EPOCH Input System - Version 2

• Funded under eCSE 13-19 as part of a package of
improvements for EPOCH

• EIS-2 has been written as a general purpose library that
can be used in a wide variety of codes

• Electromagnetic Particle in Cell code (PIC code) for plasma
physics simulations, written in 2007 using Fortran 95 and
very widely used in the community

• Now moved to newer Fortran 2003 standard opening new
options

• Has a computational mesh you solve Maxwell’s equations on

• Has a set of particles representing ions and electrons that
freely move over the grid

• MPI parallel typically run on 1000s to 10000s cores - median
job size last month on ARCHER 1200 cores

• Input system has to provide a lot of different
things

• Properties for fields on the grid

• Properties for boundaries

• Properties for particles

• Properties for mechanical parts of the code

• Any replacement needs to have

• Good performance in parallel

• Limited comms (EIS-2 does not itself use MPI)

• No dynamic libraries (EIS-2 is a static library)

• Identical behaviour to existing deck parser

• Too many users to change syntax without
there being a very substantial benefit to them

• Aims for improvement

• Faster

• More maintainable

• More extensible

• Can be moved to languages other than Fortran

begin:laser
 boundary = x_min
 intensity_w_cm2 = 1.0e15
 lambda = 1 * micron
 t_profile = gauss(time,4*femto,4*femto)
 t_end = 14 * femto
end:laser

Two parts to EIS-2

• Deck parser to deal with blocks and key/value
pairs

• Maths parser to deal with evaluating the
mathematical expression in the values

• Has to only trigger when appropriate since
some keys in EPOCH’s deck really are strings

Maths parser

EIS-2 Maths Parser
• Idea of a maths parser is to convert a mathematical

expression into a data structure that the computer
can use to evaluate the expression

• Technically made up of three parts

• Tokenizer/Lexer

• Parser

• Evaluator

EIS-2 Maths Tokenizer

sqrt(epsilon0 * kb * background_temp / background_density / qe^2)

• Termed “tokenization” or “lexing”

• Converting the input string into tokens that describe
the individual parts

• The next step is “parsing” and that converts the
tokens into a form that can be executed

• Dijkstra’s Shunting Yard Algorithm

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

^

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^

*

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^

*pi

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

*

pi

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

2

*

pi

2 pi * sin

EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

2

*

pi

((2 pi *) sin)

EIS-2 Maths Parser

• This basically just converts from infix maths to
postfix or RPN form

• BUT the computer can now simply evaluate this
expression

• Just start at the bottom and work your way up

EIS-2 Maths Evaluator

Input Stack Result

Sin

2

*

pi

2 pi * sin

>

EIS-2 Maths Evaluator

Input Stack Result

2

2 pi * sin

>

Sin

2

*

pi

EIS-2 Maths Evaluator

Input Stack Result

2

3.14

2 pi * sin

>

Sin

2

*

pi

EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

>

Multiply operator
consumes two
values from the

result stack.

Pushes the answer
onto the result stack

Sin

2

*

pi

2

3.14

EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

>
Sin consumes

one value
and pushes
on the result

Sin

2

*

pi

6.28

EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

Now just get the result
from the result stack

Input stack can be
evaluated again if

needed

Sin

2

*

pi

0

EIS-2 Maths Parser

• All of this mechanical work is hidden away by
EIS-2

• It is helpful to know because it explains some of
how the code works

• How do you actually use the EIS-2 parser?

• Not going to try to do a tutorial but will show the
simplest bits

Actual code
PROGRAM test

 USE eis_parser_header
 TYPE(eis_parser) :: parser
 CHARACTER(LEN=1000) :: input
 INTEGER(eis_error) :: errcode
 REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result
 INTEGER :: ct

 DO WHILE(.TRUE.)
 WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :"
 READ(*,'(A)') input
 ct = parser%evaluate(input, result, errcode)
 IF (errcode == eis_err_none) THEN
 PRINT *,'Result is ', result(1:ct)
 ELSE
 CALL parser%print_errors()
 END IF
 END DO

END PROGRAM test

EIS-2 Maths Parser
• Fortran “eis_parser” object does the heavy lifting

• Call the “evaluate” method with a string containing a valid
mathematical expression

• Result is an array containing all the values left on the “result”
stack after evaluation

• Allows evaluation of vector valued expressions as well as
single values

• There is also a “tokenize” method to produce a stack that you
can keep and re-evaluate

• If there are errors in the expression then you get an error code
returned and can examine the errors produced

EIS-2 Maths Parser

Please input a mathematical expression :sin(10,20)
==
The wrong number of parameters was used in a function call

1 : sin(10,20)
 ^
 1
==

EIS-2 Maths Parser

Please input a mathematical expression :10+20*wibble(2*pi)
==
Unknown value or function

1 : 10+20*wibble(2*pi...
 ^
 7
==

EIS-2 Maths Parser

Please input a mathematical expression :1+log10(-1)
==
A mathematically invalid operation was requested

1 : 1+log10(-1)
 ^
 3
==

EIS-2 Maths Parser

Please input a mathematical expression :1+log10(-1)
==
A mathematically invalid operation was requested

1 : 1+log10(-1)
 ^
 3
==

• Error messages are built into the EIS-2 code but can be
overridden from an external file for localisation
purposes

• Support for Unicode where your Fortran compiler
supports it (none of them do very well on this yet)

Parser Objects
• Literals - Put in by users as number

• Operators - both unary operators and binary operator. No
ternary operators

• Constants - Name mapped to a constant value

• Functions - Take parameters and return a value. May optionally
be given a number of expected parameters or be variadic and
check their parameter count themselves

• Variable - Name mapped to a result function (like a function) but
takes no parameters

• Functor - Object that behaves like a function in the deck but
carries state with it

Adding a constant
PROGRAM test

 USE eis_parser_header
 TYPE(eis_parser) :: parser
 CHARACTER(LEN=1000) :: input
 INTEGER(eis_error) :: errcode
 REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result
 INTEGER :: ct

 CALL parser%add_constant('myconstant', 1.2345_eis_num, errcode)
 IF (errcode /= eis_err_none) CALL parser%print_errors()

 DO WHILE(.TRUE.)
 WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :"
 READ(*,'(A)') input
 ct = parser%evaluate(input, result, errcode)
 IF (errcode == eis_err_none) THEN
 PRINT *,'Result is ', result(1:ct)
 ELSE
 CALL parser%print_errors()
 END IF
 END DO

END PROGRAM test

Adding a function
PROGRAM test

 USE eis_parser_header
 TYPE(eis_parser) :: parser
 CHARACTER(LEN=1000) :: input
 INTEGER(eis_error) :: errcode
 REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result
 INTEGER :: ct

 CALL parser%add_function('cauchy', cauchy_dist, errcode, expected_params = 3)
 IF (errcode /= eis_err_none) CALL parser%print_errors()

 DO WHILE(.TRUE.)
 WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :"
 READ(*,'(A)') input
 ct = parser%evaluate(input, result, errcode)
 IF (errcode == eis_err_none) THEN
 PRINT *,'Result is ', result(1:ct)
 ELSE
 CALL parser%print_errors()
 END IF
 END DO

END PROGRAM test

Adding a function

 !Function to implement the Cauchy distribution
 !https://en.wikipedia.org/wiki/Cauchy_distribution
 FUNCTION cauchy_dist(nparams, params, host_params, status_code, errcode) &
 RESULT(res) BIND(C)
 INTEGER(eis_i4), VALUE, INTENT(IN) :: nparams
 REAL(eis_num), DIMENSION(nparams), INTENT(IN) :: params
 TYPE(C_PTR), VALUE, INTENT(IN) :: host_params
 INTEGER(eis_status), INTENT(INOUT) :: status_code
 INTEGER(eis_error), INTENT(INOUT) :: errcode
 REAL(eis_num) :: res
 REAL(eis_num), PARAMETER :: pi = 4.0_eis_num * ATAN(1.0_eis_num)

 !params(1) - x, dependent variable
 !params(2) - x0, location parameter
 !params(3) - gamma, scale parameter

 res = 1.0/(pi * params(3)) * (params(3)**2 / (params(1) - params(2))**2 &
 + params(3)**2)

 END FUNCTION cauchy_dist

Functions, Variable and Functors

• Functions and variables all have the same “getter
function” as shown for the Cauchy function

• Variables may optionally be specified by a Fortran
or C pointer

• Functors are implemented as Fortran types derived
from the “eis_functor” type and implement almost
exactly the same function as an “operate” method but
have a “this” parameter that refers to the functor itself

EIS-2 Interoperability
• EIS-2 is a Fortran library since it’s main purpose is to work with

EPOCH

• Can create all Fortran objects through a C interface. Become
integer handles in C

• Either uses BIND(C) functions in Fortran (as shown above) or has
both C and Fortran function interfaces

• C Functors work by capturing a “void*” pointer at the time they are
created and having an extra parameter to the getter function in C
that returns that pointer

• Interoperability interface nearly complete for maths parser

• About 50% complete for whole library

Host parameters
• Generally don’t want a parser that is entirely context

independent

• Want to specify context for what value a variable or
function should return

• Can do this in various ways but host parameters is one

• C void pointer to anything you like. Taken when you
evaluate an expression and passed to all the evaluation
functions

• EPOCH uses host parameters to pass space and time
information to parameters that users then use in the deck

Host parameters
 TYPE, BIND(C) :: data_item
 REAL(eis_num) :: x = 0.0_eis_num
 REAL(eis_num) :: y = 0.0_eis_num
 END TYPE data_item

 CONTAINS

 FUNCTION get_x(nparams, params, host_params, status_code, errcode) &
 RESULT(res) BIND(C)
 INTEGER(eis_i4), VALUE, INTENT(IN) :: nparams
 REAL(eis_num), DIMENSION(nparams), INTENT(IN) :: params
 TYPE(C_PTR), VALUE, INTENT(IN) :: host_params
 INTEGER(eis_status), INTENT(INOUT) :: status_code
 INTEGER(eis_error), INTENT(INOUT) :: errcode
 REAL(eis_num) :: res
 TYPE(data_item), POINTER :: dat

 IF (.NOT. C_ASSOCIATED(host_params)) RETURN
 CALL C_F_POINTER(host_params, dat)
 res = dat%x

 END FUNCTION get_x

Host parameters

 TYPE(data_item), TARGET :: item
 CALL parser%add_variable('x', get_x, errcode)
 CALL parser%add_variable('y', get_y, errcode)

 WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :"
 READ(*,'(A)') input
 CALL parser%tokenize(input, stack, errcode)
 DO iy = 1, 100
 item%y = REAL(iy-1, eis_num)/99.0_eis_num
 DO ix = 1 , 100
 item%x = REAL(ix-1, eis_num)/99.0_eis_num
 ct = parser%evaluate(stack, result, errcode, host_params = C_LOC(item))
 WRITE(10,*) result(1)
 END DO
 END DO

Host parameters
• Can put in any

function of X and
Y that you want

• Will be
evaluated
between 0->1 in
both X and Y and
written to file

• sin(x*2*pi) 
*cos(y*4*pi)

Advanced Parser Objects
• Stack variables - Variables that are created from a

stack rather than from a numerical value. If
variables, functions or functors behave differently
when they are called with different host
parameters they will continue to do so when they
are referred to through a stack variable

begin:constant
 v0 = 0.05 * c
 p0 = v0 * me * (1.0 + 4.0 * x/x_max)
end:constant

p0 varies
in space

Advanced Parser Objects

• Emplaced functions - Generalisation of stack variables.
Takes parameters like a function but returns a stack
rather than a value which retains all of it’s time and
space varying properties as well.

• Have a different getter function to a normal function

• You tell the parser when to actually call the getter
function so you can use emplaced functions to choose
exactly what a given stack does when it is evaluated

begin:species
 name = proton
 number_density = number_density(Electron)
 identify:proton
end:species

Simplifier
• The logic shown above for the parser ignores one obvious

question - simplification

• Many of the tokens can be combined immediately but some
have to be kept because they use host parameters or other
external data source to change their results

• All constants are simplifiable

• Functions and functors where all parameters are simplifiable
are simplifiable (unless the developer overrides)

• Variables are not simplifiable unless the developer overrides

Simplifier
• Simplification works by forming an abstract syntax

tree and replacing any branches that are
simplifiable

• Alternative data structure to the stacks that EIS-2
uses. Many other parsers use ASTs to store their
main data

• Tends to be slower to evaluate

• Can massively simplify expressions

Simplifier
sin(2 * pi * x) * cos(4 * pi * y)

Simplifier

Simplifier

Performance
• Can’t get to performance of native code

• Performance is still quite good

• ~30-40 CPU cycles per stack element

• Typically about 1/10th speed of native scalar
floating point code

• About 25 times faster than using a Python
interpreter with numpy

Performance
• Stacks are opaque objects, the host code just evaluates

them to get a result

• Can bind a result function to them for faster
performance

• Overhead of one function pointer ~ 4-5 CPU cycles

• Future work aims to offer an option to use libllvm to
compile stack expressions

• Only preliminary tests so far and user specified
functions/constants will either be harder to produce or
will still be external function calls

Advantages and
Disadvantages

Advantages
• Static library in standards compliant F2003 (or

optionally F2008) with no library dependencies

• Easy to build on any platform and easy to link to
your code

• Much faster than general purpose scripting
languages like Python (~25x faster)

• Easier to add to your code than Python (or even
Lua)

Advantages
• Gives users exactly the level of control that you want over

your code

• No effects outside your code in the EIS-2 library

• Decks are safe to run unless your code implements
destructive features through the deck

• BSD 3 clause license, compatible with open and closed
source software

• Intended for shipping with your code

• Intended for HPC workflow

Disadvantages
• Only supports real and string datatypes (and

strings are a bit limited)

• Simplifier has some limitations

• Working on them!

• Is more restrictive than scripting language if you
want to give users that much power

• Limited ecosystem since brand new

Deck parser

Deck parser
• Why deck?

• Literally from a deck of punch cards back in the early
computer days

• Why not?

• As good a term as anything

• Means an input telling a program what to do without
having to recompile the source code

• In EIS-2 connected to the maths parser since it is used to
process some of the input

Deck Terms
• Block - collection of connected keys. May contain other blocks

• Type - a definition of a block. Every block type has a unique ID
number

• Instance - an actual block in a deck. Each instance of a block has a
unique ID that is not related to the unique ID for the block type

• Key - named item that is associated with a value

• Value - an input that the host code wants

• Definition - A definition of the possible blocks and keys in a deck. Done
through and eis_deck_definition object

• Pass - A run of the deck parser over a deck. Decks may take multiple
passes to be fully read

Deck Terms
• Root - The block instance that all other blocks are

within

• Parents - The unique IDs of the block instances
that are the parents of the current block instance.
The last parent of a block is the block itself

• Parent_kinds - The unique IDs of the block types
that are the parents of the current block instance.
The last parent_kind of a block is the kind of the
block itself

begin:laser
 boundary = x_min
 intensity_w_cm2 = 1.0e15
 lambda = 1 * micron
 t_profile = gauss(time,4*femto,4*femto)
 t_end = 14 * femto
end:laser

Deck definitions
• A deliberate design decision of the EIS-2 deck parser was

to separate the definition of the structure of an input deck
from the instantiation of a deck

• Currently written to parse EPOCH style decks

• Could easily write a parser for JSON, YAML, XML,
Windows INI files etc. and would be a drop in
replacement for a code

• Definition specifies action functions for when events occur

• In order to keep interfaces natural for each language,
separate C and Fortran versions of all action functions

Block action functions
• init_block - When a block type is first encountered in the first

pass

• start_pass - When a block type is first encountered in a given
pass

• start_block - When a block instance is started

• end_block - When a block instance is ended

• end_pass - When a pass ends and a block of this type has
been encountered

• final_block - When parsing is finished and a block of this type
has been encountered

Key action functions
• Key action functions are called when a key is encountered

• key_value_fn - Returns strings for key and value

• key_numeric_value_fn - Returns string for key and uses an
eis_parser object to calculate a numeric value

• key_stack_fn - Returns string for key and an eis_stack object for
the value

• Can also store the numeric value directly to a C or Fortran
pointer to an integer or real variable

• Blocks have any_* versions of these for handling non-specific
keys

EPOCH deck parsing
• EPOCH type decks are parsed using an

eis_text_deck_parser object

• Loads data from file and processes it using a definition

• Option to load data and store it to a character
variable

• Includes information on line number etc. that is
used for error reporting

• Used in EPOCH to load deck on rank 0 and
broadcast to other processors

Example
 TYPE(eis_text_deck_parser) :: deck
 TYPE(eis_deck_definition) :: dfn
 INTEGER(eis_error) :: errcode
 TYPE(eis_deck_block_definition), POINTER :: root, block

 errcode = eis_err_none
 root => dfn%init()
 block => root%add_block('block1')

 CALL block%add_key('key1', key_value_fn = key_str_sub, &
 key_numeric_value_fn = key_val_sub)
 CALL block%add_key('key2', key_value_fn = key_str_sub, &
 key_numeric_value_fn = key_val_sub)

 block => root%add_block('block2')

 CALL block%add_key('new_key', key_value_fn = key_str_sub, &
 key_numeric_value_fn = key_val_sub)

 CALL deck%init()
 CALL deck%parse_deck_file('demo.deck', dfn, errcode, &
 allow_empty_blocks = .TRUE.)
 IF (errcode /= eis_err_none) THEN
 DO ierr = 1, deck%get_error_count()
 CALL deck%get_error_report(ierr, str)
 PRINT *, str
 END DO
 DEALLOCATE(str)
 END IF

Example
 SUBROUTINE key_str_sub(key_text, key_value, pass_number, &
 parents, parent_kind, status_code, host_state, errcode)
 CHARACTER(LEN=*), INTENT(IN) :: key_text
 CHARACTER(LEN=*), INTENT(IN) :: key_value
 INTEGER, INTENT(IN) :: pass_number
 INTEGER, DIMENSION(:), INTENT(IN) :: parents
 INTEGER, DIMENSION(:), INTENT(IN) :: parent_kind
 INTEGER(eis_status), INTENT(INOUT) :: status_code
 INTEGER(eis_bitmask), INTENT(INOUT) :: host_state
 INTEGER(eis_error), INTENT(INOUT) :: errcode
 INTEGER :: lq, uq

 !If no quotes are present then this isn’t a string
 lq = INDEX(key_value, '"')
 IF (lq == 0) THEN
 status_code = eis_status_not_handled
 RETURN
 END IF

 PRINT *,'Found text key ', TRIM(key_text), '. Value is ', &
 key_value(lq+1:uq-1)

 END SUBROUTINE key_str_sub

Example

 SUBROUTINE key_val_sub(key_text, values, pass_number, cap_bits, parser, &
 parents, parent_kind, status_code, host_state, errcode)
 CHARACTER(LEN=*), INTENT(IN) :: key_text
 REAL(eis_num), DIMENSION(:), INTENT(IN) :: values
 INTEGER, INTENT(IN) :: pass_number
 INTEGER(eis_bitmask), INTENT(IN) :: cap_bits
 TYPE(eis_parser), INTENT(INOUT) :: parser
 INTEGER, DIMENSION(:), INTENT(IN) :: parents
 INTEGER, DIMENSION(:), INTENT(IN) :: parent_kind
 INTEGER(eis_status), INTENT(INOUT) :: status_code
 INTEGER(eis_bitmask), INTENT(INOUT) :: host_state
 INTEGER(eis_error), INTENT(INOUT) :: errcode

 PRINT *,'Found numerical key ', TRIM(key_text), '. Values are ', values

 END SUBROUTINE key_val_sub

Example

begin:block1
 key2 = "my key"
end:block1

begin:block2
 new_key = 7+12
end:block2

begin:block1
 key1 = sin(pi/3)
end:block1

 Found text key key2. Value is my key
 Found numerical key new_key. Values are 19.000000000000000
 Found numerical key key1. Values are 0.86602540378443860

Parser and stacks
• By default an eis_text_deck_parser object will create a

maths parser for itself

• You can optionally specify a pointer to an eis_parser
object to the init method to specify a custom parser
that has your variables, functions etc. in it

• If you use the action functions that give you a stack
you should copy the stack if you want to keep it

• In Fortran just do “mystack = stack”

• In C there is an ‘eis_copy_stack’ function

Other use of deck parser
• As well as `eis_text_deck_parser` there is another

method for calling the bits of a deck definition.
`eis_deck_caller`

• This is a programatic way of starting and ending
blocks and calling keys

• Together with the ability to bind a result function
to a stack this also means that you can use your
deck definition to provide an external interface to
your code

Other use of deck parser

 FUNCTION epoch_start_block(block_name) BIND(C)

 IMPLICIT NONE

 TYPE(C_PTR), VALUE, INTENT(IN) :: block_name
 INTEGER(eis_error) :: epoch_start_block
 INTEGER :: uid

 CALL eis_c_f_string(block_name, f_blockname)
 uid = deck_caller%start_block(f_blockname, epoch_start_block, &
 pass_number = 1)

 DEALLOCATE(f_blockname)

 END FUNCTION epoch_start_block

Other use of deck parser

 FUNCTION epoch_call_key(key, value, value_function) BIND(C)

 TYPE(C_PTR), VALUE, INTENT(IN) :: key, value
 TYPE(C_FUNPTR), VALUE, INTENT(IN) :: value_function
 INTEGER(eis_error) :: epoch_call_key
 PROCEDURE(parser_result_function), POINTER :: value_function_f
 INTEGER :: uid
 CHARACTER(LEN=:), ALLOCATABLE :: key_f, value_f

 CALL eis_c_f_string(key, key_f)
 CALL eis_c_f_string(value, value_f)
 IF (C_ASSOCIATED(value_function)) THEN
 CALL C_F_PROCPOINTER(value_function, value_function_f)
 uid = deck_caller%call_key(key_f, epoch_call_key, &
 value_text = value_f, value_function = value_function_f, &
 pass_number = 1)
 ELSE
 uid = deck_caller%call_key(key_f, epoch_call_key, &
 value_text = value_f, pass_number = 1)
 END IF

Other use of deck parser

 FUNCTION epoch_end_deck() BIND(C)

 INTEGER(eis_error) :: epoch_end_deck

 CALL deck_caller%end_pass(epoch_end_deck, pass_number = 1)
 IF (epoch_end_deck /= eis_err_none) RETURN

 ! This line replays the deck that you ran for pass 2
 CALL deck_caller%replay_deck(epoch_end_deck, pass_number = 2, &
 replay_control_blocks = .TRUE.)
 ! Now finalise all blocks and the deck has been parsed
 CALL deck_caller%finalise_all_blocks(epoch_end_deck, pass_number = 2)

 END FUNCTION epoch_end_deck

Other use of deck parser
• That isn’t everything that’s needed even for that

interface (what’s missing is mostly EPOCH internals but
there is also stuff on reporting lines and filenames for
errors from external codes)

• Also in a practical code you will probably want to have
more features than just being able to run your input
deck from an external program

• But it is a very strong start to being able to mix a high
performance text file input with either allowing linking
of codes for multi scale simulations or using a scripting
language to provide interactive operation of your code

Description and
Literate Input

Descriptions

• Both parser elements (functions, constants,
functors etc.) and deck blocks and keys can have
text descriptions associated with them

• You can retrieve these descriptions element by
element or you can get EIS-2 to produce you a
markdown document for either parser or deck
information

Descriptions

Parser Visualisations
• The maths parser can visualise a stack in various ways

• You can get the RPN version of the current state of
the stack (simplified or not as specified)

• You can convert a stack back into infix maths in
current state (even without simplification some
changes to brackets will occur although the
expression will be mathematically equivalent)

• A graphviz .dot file view of the stack (see the
diagrams from earlier)

Deck Visualisations

• You can also visualise deck definitions or actual
decks as graphviz dot files

• Bit niche in general because most decks tend to
be quite flat

• Can be useful for debugging

Conclusions

Future Work
• Finish the interoperability interface

• Add vector execution option - execute several values at once

• Performance improvement only for complex individual
getter functions

• Add LLVM compilation option (?)

• Quite tricky and performance benefits will be limited
without requiring host code functions be compiled to
LLVM intermediate language

• More examples and documentation

Conclusions
• EIS-2 provides a complete, open source library for

reading input files containing rich mathematical
notation

• Currently fully featured for Fortran code but with a
complete C interface coming soon for other languages

• Use of a statically linked library with no internal
communications makes it well suited to large scale
HPC

• Can also be used to provide a link from your code to
other software drivers

