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EIS-2
• Library to control a code from a structured text file using 

rich mathematical notation 

• Intended to replace the existing system in the EPOCH 
plasma physics code 

• EPOCH Input System - Version 2 

• Funded under eCSE 13-19 as part of a package of 
improvements for EPOCH 

• EIS-2 has been written as a general purpose library that 
can be used in a wide variety of codes



• Electromagnetic Particle in Cell code (PIC code) for plasma 
physics simulations, written in 2007 using Fortran 95 and 
very widely used in the community 

• Now moved to newer Fortran 2003 standard opening new 
options 

• Has a computational mesh you solve Maxwell’s equations on 

• Has a set of particles representing ions and electrons that 
freely move over the grid 

• MPI parallel typically run on 1000s to 10000s cores - median 
job size last month on ARCHER 1200 cores



• Input system has to provide a lot of different 
things 

• Properties for fields on the grid 

• Properties for boundaries 

• Properties for particles 

• Properties for mechanical parts of the code



• Any replacement needs to have 

• Good performance in parallel 

• Limited comms (EIS-2 does not itself use MPI) 

• No dynamic libraries (EIS-2 is a static library) 

• Identical behaviour to existing deck parser 

• Too many users to change syntax without 
there being a very substantial benefit to them



• Aims for improvement 

• Faster 

• More maintainable 

• More extensible 

• Can be moved to languages other than Fortran



begin:laser 
  boundary = x_min 
  intensity_w_cm2 = 1.0e15 
  lambda = 1 * micron 
  t_profile = gauss(time,4*femto,4*femto) 
  t_end = 14 * femto 
end:laser





Two parts to EIS-2

• Deck parser to deal with blocks and key/value 
pairs 

• Maths parser to deal with evaluating the 
mathematical expression in the values 

• Has to only trigger when appropriate since 
some keys in EPOCH’s deck really are strings



Maths parser



EIS-2 Maths Parser
• Idea of a maths parser is to convert a mathematical 

expression into a data structure that the computer 
can use to evaluate the expression 

• Technically made up of three parts 

• Tokenizer/Lexer 

• Parser 

• Evaluator



EIS-2 Maths Tokenizer

sqrt(epsilon0 * kb * background_temp / background_density / qe^2)

• Termed “tokenization” or “lexing” 

• Converting the input string into tokens that describe 
the individual parts 

• The next step is “parsing” and that converts the 
tokens into a form that can be executed 

• Dijkstra’s Shunting Yard Algorithm 



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

^



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^

*



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

^

*pi



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin2

*

pi



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

2

*

pi

2 pi * sin



EIS-2 Maths Parser
sin(2 * pi)

Output Intermediate

Sin

2

*

pi

((2 pi *) sin)



EIS-2 Maths Parser

• This basically just converts from infix maths to 
postfix or RPN form 

• BUT the computer can now simply evaluate this 
expression 

• Just start at the bottom and work your way up



EIS-2 Maths Evaluator

Input Stack Result

Sin

2

*

pi

2 pi * sin

>



EIS-2 Maths Evaluator

Input Stack Result
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2 pi * sin

>
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EIS-2 Maths Evaluator

Input Stack Result

2

3.14

2 pi * sin

>
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EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

>

Multiply operator 
consumes two 
values from the  

result stack. 

Pushes the answer 
onto the result stack

Sin

2

*

pi

2

3.14



EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

>
Sin consumes  

one value 
and pushes  
on the result

Sin

2

*

pi

6.28



EIS-2 Maths Evaluator

Input Stack Result

2 pi * sin

Now just get the result 
from the result stack 

Input stack can be 
evaluated again if 

needed

Sin

2

*

pi

0



EIS-2 Maths Parser

• All of this mechanical work is hidden away by 
EIS-2 

• It is helpful to know because it explains some of 
how the code works 

• How do you actually use the EIS-2 parser? 

• Not going to try to do a tutorial but will show the 
simplest bits



Actual code
PROGRAM test 
   
  USE eis_parser_header 
  TYPE(eis_parser) :: parser 
  CHARACTER(LEN=1000) :: input 
  INTEGER(eis_error) :: errcode 
  REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result 
  INTEGER :: ct 

  DO WHILE(.TRUE.) 
    WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :" 
    READ(*,'(A)') input 
    ct = parser%evaluate(input, result, errcode) 
    IF (errcode == eis_err_none) THEN 
      PRINT *,'Result is ', result(1:ct) 
    ELSE 
      CALL parser%print_errors() 
    END IF 
  END DO 

END PROGRAM test



EIS-2 Maths Parser
• Fortran “eis_parser” object does the heavy lifting 

• Call the “evaluate” method with a string containing a valid 
mathematical expression 

• Result is an array containing all the values left on the “result” 
stack after evaluation 

• Allows evaluation of vector valued expressions as well as 
single values 

• There is also a “tokenize” method to produce a stack that you 
can keep and re-evaluate 

• If there are errors in the expression then you get an error code 
returned and can examine the errors produced



EIS-2 Maths Parser

Please input a mathematical expression :sin(10,20) 
================================================================================ 
The wrong number of parameters was used in a function call 

1 : sin(10,20) 
    ^ 
    1 
================================================================================



EIS-2 Maths Parser

Please input a mathematical expression :10+20*wibble(2*pi) 
================================================================================ 
Unknown value or function 

1 : 10+20*wibble(2*pi... 
          ^ 
          7 
================================================================================



EIS-2 Maths Parser

Please input a mathematical expression :1+log10(-1) 
================================================================================ 
A mathematically invalid operation was requested 

1 : 1+log10(-1) 
      ^ 
      3 
================================================================================



EIS-2 Maths Parser

Please input a mathematical expression :1+log10(-1) 
================================================================================ 
A mathematically invalid operation was requested 

1 : 1+log10(-1) 
      ^ 
      3 
================================================================================

• Error messages are built into the EIS-2 code but can be 
overridden from an external file for localisation 
purposes 

• Support for Unicode where your Fortran compiler 
supports it (none of them do very well on this yet)



Parser Objects
• Literals - Put in by users as number 

• Operators - both unary operators and binary operator. No 
ternary operators 

• Constants - Name mapped to a constant value 

• Functions - Take parameters and return a value. May optionally 
be given a number of expected parameters or be variadic and 
check their parameter count themselves 

• Variable - Name mapped to a result function (like a function) but 
takes no parameters 

• Functor - Object that behaves like a function in the deck but 
carries state with it



Adding a constant
PROGRAM test 
   
  USE eis_parser_header 
  TYPE(eis_parser) :: parser 
  CHARACTER(LEN=1000) :: input 
  INTEGER(eis_error) :: errcode 
  REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result 
  INTEGER :: ct 

  CALL parser%add_constant('myconstant', 1.2345_eis_num, errcode) 
  IF (errcode /= eis_err_none) CALL parser%print_errors() 

  DO WHILE(.TRUE.) 
    WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :" 
    READ(*,'(A)') input 
    ct = parser%evaluate(input, result, errcode) 
    IF (errcode == eis_err_none) THEN 
      PRINT *,'Result is ', result(1:ct) 
    ELSE 
      CALL parser%print_errors() 
    END IF 
  END DO 

END PROGRAM test



Adding a function
PROGRAM test 
   
  USE eis_parser_header 
  TYPE(eis_parser) :: parser 
  CHARACTER(LEN=1000) :: input 
  INTEGER(eis_error) :: errcode 
  REAL(eis_num), DIMENSION(:), ALLOCATABLE :: result 
  INTEGER :: ct 

  CALL parser%add_function('cauchy', cauchy_dist, errcode, expected_params = 3) 
  IF (errcode /= eis_err_none) CALL parser%print_errors() 

  DO WHILE(.TRUE.) 
    WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :" 
    READ(*,'(A)') input 
    ct = parser%evaluate(input, result, errcode) 
    IF (errcode == eis_err_none) THEN 
      PRINT *,'Result is ', result(1:ct) 
    ELSE 
      CALL parser%print_errors() 
    END IF 
  END DO 

END PROGRAM test



Adding a function

  !Function to implement the Cauchy distribution 
  !https://en.wikipedia.org/wiki/Cauchy_distribution 
  FUNCTION cauchy_dist(nparams, params, host_params, status_code, errcode) & 
      RESULT(res) BIND(C) 
    INTEGER(eis_i4), VALUE, INTENT(IN) :: nparams 
    REAL(eis_num), DIMENSION(nparams), INTENT(IN) :: params 
    TYPE(C_PTR), VALUE, INTENT(IN) :: host_params 
    INTEGER(eis_status), INTENT(INOUT) :: status_code 
    INTEGER(eis_error), INTENT(INOUT) :: errcode 
    REAL(eis_num) :: res 
    REAL(eis_num), PARAMETER :: pi = 4.0_eis_num * ATAN(1.0_eis_num) 

    !params(1) - x, dependent variable 
    !params(2) - x0, location parameter 
    !params(3) - gamma, scale parameter 

    res = 1.0/(pi * params(3)) * (params(3)**2 / (params(1) - params(2))**2 & 
        + params(3)**2) 

  END FUNCTION cauchy_dist



Functions, Variable and Functors

• Functions and variables all have the same “getter 
function” as shown for the Cauchy function 

• Variables may optionally be specified by a Fortran 
or C pointer 

• Functors are implemented as Fortran types derived 
from the “eis_functor” type and implement almost 
exactly the same function as an “operate” method but 
have a “this” parameter that refers to the functor itself



EIS-2 Interoperability
• EIS-2 is a Fortran library since it’s main purpose is to work with 

EPOCH 

• Can create all Fortran objects through a C interface. Become 
integer handles in C 

• Either uses BIND(C) functions in Fortran (as shown above) or has 
both C and Fortran function interfaces 

• C Functors work by capturing a “void*” pointer at the time they are 
created and having an extra parameter to the getter function in C 
that returns that pointer 

• Interoperability interface nearly complete for maths parser 

• About 50% complete for whole library



Host parameters
• Generally don’t want a parser that is entirely context 

independent 

• Want to specify context for what value a variable or 
function should return 

• Can do this in various ways but host parameters is one 

• C void pointer to anything you like. Taken when you 
evaluate an expression and passed to all the evaluation 
functions 

• EPOCH uses host parameters to pass space and time 
information to parameters that users then use in the deck



Host parameters
  TYPE, BIND(C) :: data_item 
    REAL(eis_num) :: x = 0.0_eis_num 
    REAL(eis_num) :: y = 0.0_eis_num 
  END TYPE data_item 

  CONTAINS 

  FUNCTION get_x(nparams, params, host_params, status_code, errcode) & 
      RESULT(res) BIND(C) 
    INTEGER(eis_i4), VALUE, INTENT(IN) :: nparams 
    REAL(eis_num), DIMENSION(nparams), INTENT(IN) :: params 
    TYPE(C_PTR), VALUE, INTENT(IN) :: host_params 
    INTEGER(eis_status), INTENT(INOUT) :: status_code 
    INTEGER(eis_error), INTENT(INOUT) :: errcode 
    REAL(eis_num) :: res 
    TYPE(data_item), POINTER :: dat 

    IF (.NOT. C_ASSOCIATED(host_params)) RETURN 
    CALL C_F_POINTER(host_params, dat) 
    res = dat%x 

  END FUNCTION get_x



Host parameters

  TYPE(data_item), TARGET :: item 
  CALL parser%add_variable('x', get_x, errcode) 
  CALL parser%add_variable('y', get_y, errcode) 

  WRITE(*,'(A)', ADVANCE = 'NO') "Please input a mathematical expression :" 
  READ(*,'(A)') input 
  CALL parser%tokenize(input, stack, errcode) 
  DO iy = 1, 100 
    item%y = REAL(iy-1, eis_num)/99.0_eis_num 
    DO ix = 1 , 100 
      item%x = REAL(ix-1, eis_num)/99.0_eis_num 
      ct = parser%evaluate(stack, result, errcode, host_params = C_LOC(item)) 
      WRITE(10,*) result(1) 
    END DO 
  END DO 



Host parameters
• Can put in any 

function of X and 
Y that you want 

• Will be 
evaluated 
between 0->1 in 
both X and Y and 
written to file 

• sin(x*2*pi) 
*cos(y*4*pi)



Advanced Parser Objects
• Stack variables - Variables that are created from a 

stack rather than from a numerical value. If 
variables, functions or functors behave differently 
when they are called with different host 
parameters they will continue to do so when they 
are referred to through a stack variable

begin:constant 
  v0 = 0.05 * c 
  p0 = v0 * me * (1.0 + 4.0 * x/x_max) 
end:constant

p0 varies 
in space



Advanced Parser Objects

• Emplaced functions - Generalisation of stack variables. 
Takes parameters like a function but returns a stack 
rather than a value which retains all of it’s time and 
space varying properties as well. 

• Have a different getter function to a normal function 

• You tell the parser when to actually call the getter 
function so you can use emplaced functions to choose 
exactly what a given stack does when it is evaluated

begin:species 
  name = proton 
  number_density = number_density(Electron) 
  identify:proton 
end:species



Simplifier
• The logic shown above for the parser ignores one obvious 

question - simplification 

• Many of the tokens can be combined immediately but some 
have to be kept because they use host parameters or other 
external data source to change their results 

• All constants are simplifiable 

• Functions and functors where all parameters are simplifiable 
are simplifiable (unless the developer overrides) 

• Variables are not simplifiable unless the developer overrides



Simplifier
• Simplification works by forming an abstract syntax 

tree and replacing any branches that are 
simplifiable 

• Alternative data structure to the stacks that EIS-2 
uses. Many other parsers use ASTs to store their 
main data 

• Tends to be slower to evaluate 

• Can massively simplify expressions



Simplifier
sin(2 * pi * x) * cos(4 * pi * y)



Simplifier



Simplifier



Performance
• Can’t get to performance of native code 

• Performance is still quite good 

• ~30-40 CPU cycles per stack element 

• Typically about 1/10th speed of native scalar 
floating point code 

• About 25 times faster than using a Python 
interpreter with numpy



Performance
• Stacks are opaque objects, the host code just evaluates 

them to get a result 

• Can bind a result function to them for faster 
performance 

• Overhead of one function pointer ~ 4-5 CPU cycles 

• Future work aims to offer an option to use libllvm to 
compile stack expressions 

• Only preliminary tests so far and user specified 
functions/constants will either be harder to produce or 
will still be external function calls



Advantages and 
Disadvantages



Advantages
• Static library in standards compliant F2003 (or 

optionally F2008) with no library dependencies 

• Easy to build on any platform and easy to link to 
your code 

• Much faster than general purpose scripting 
languages like Python (~25x faster) 

• Easier to add to your code than Python (or even 
Lua)



Advantages
• Gives users exactly the level of control that you want over 

your code 

• No effects outside your code in the EIS-2 library 

• Decks are safe to run unless your code implements 
destructive features through the deck 

• BSD 3 clause license, compatible with open and closed 
source software 

• Intended for shipping with your code 

• Intended for HPC workflow



Disadvantages
• Only supports real and string datatypes (and 

strings are a bit limited) 

• Simplifier has some limitations 

• Working on them! 

• Is more restrictive than scripting language if you 
want to give users that much power 

• Limited ecosystem since brand new



Deck parser



Deck parser
• Why deck? 

• Literally from a deck of punch cards back in the early 
computer days 

• Why not? 

• As good a term as anything 

• Means an input telling a program what to do without 
having to recompile the source code 

• In EIS-2 connected to the maths parser since it is used to 
process some of the input



Deck Terms
• Block - collection of connected keys. May contain other blocks 

• Type - a definition of a block. Every block type has a unique ID 
number 

• Instance - an actual block in a deck. Each instance of a block has a 
unique ID that is not related to the unique ID for the block type 

• Key - named item that is associated with a value 

• Value - an input that the host code wants 

• Definition - A definition of the possible blocks and keys in a deck. Done 
through and eis_deck_definition object 

• Pass - A run of the deck parser over a deck. Decks may take multiple 
passes to be fully read



Deck Terms
• Root - The block instance that all other blocks are 

within 

• Parents  - The unique IDs of the block instances 
that are the parents of the current block instance. 
The last parent of a block is the block itself 

• Parent_kinds - The unique IDs of the block types 
that are the parents of the current block instance. 
The last parent_kind of a block is the kind of the 
block itself



begin:laser 
  boundary = x_min 
  intensity_w_cm2 = 1.0e15 
  lambda = 1 * micron 
  t_profile = gauss(time,4*femto,4*femto) 
  t_end = 14 * femto 
end:laser



Deck definitions
• A deliberate design decision of the EIS-2 deck parser was 

to separate the definition of the structure of an input deck 
from the instantiation of a deck 

• Currently written to parse EPOCH style decks 

• Could easily write a parser for JSON, YAML, XML, 
Windows INI files etc. and would be a drop in 
replacement for a code 

• Definition specifies action functions for when events occur 

• In order to keep interfaces natural for each language, 
separate C and Fortran versions of all action functions



Block action functions
• init_block - When a block type is first encountered in the first 

pass 

• start_pass - When a block type is first encountered in a given 
pass 

• start_block - When a block instance is started 

• end_block - When a block instance is ended 

• end_pass  - When a pass ends and a block of this type has 
been encountered 

• final_block - When parsing is finished and a block of this type 
has been encountered



Key action functions
• Key action functions are called when a key is encountered 

• key_value_fn - Returns strings for key and value 

• key_numeric_value_fn - Returns string for key and uses an 
eis_parser object to calculate a numeric value 

• key_stack_fn - Returns string for key and an eis_stack object for 
the value 

• Can also store the numeric value directly to a C or Fortran 
pointer to an integer or real variable 

• Blocks have any_* versions of these for handling non-specific 
keys



EPOCH deck parsing
• EPOCH type decks are parsed using an 

eis_text_deck_parser object 

• Loads data from file and processes it using a definition 

• Option to load data and store it to a character 
variable 

• Includes information on line number etc. that is 
used for error reporting 

• Used in EPOCH to load deck on rank 0 and 
broadcast to other processors



Example
  TYPE(eis_text_deck_parser) :: deck 
  TYPE(eis_deck_definition) :: dfn 
  INTEGER(eis_error) :: errcode 
  TYPE(eis_deck_block_definition), POINTER :: root, block 

  errcode = eis_err_none 
  root => dfn%init() 
  block => root%add_block('block1') 

  CALL block%add_key('key1', key_value_fn = key_str_sub, & 
      key_numeric_value_fn = key_val_sub) 
  CALL block%add_key('key2', key_value_fn = key_str_sub, & 
      key_numeric_value_fn = key_val_sub) 

  block => root%add_block('block2') 

  CALL block%add_key('new_key', key_value_fn = key_str_sub, & 
      key_numeric_value_fn = key_val_sub) 

  CALL deck%init() 
  CALL deck%parse_deck_file('demo.deck', dfn, errcode, & 
      allow_empty_blocks = .TRUE.) 
  IF (errcode /= eis_err_none) THEN 
    DO ierr = 1, deck%get_error_count() 
      CALL deck%get_error_report(ierr, str) 
      PRINT *, str 
    END DO 
    DEALLOCATE(str) 
  END IF



Example
  SUBROUTINE key_str_sub(key_text, key_value, pass_number, & 
      parents, parent_kind, status_code, host_state, errcode) 
    CHARACTER(LEN=*), INTENT(IN) :: key_text 
    CHARACTER(LEN=*), INTENT(IN) :: key_value 
    INTEGER, INTENT(IN) :: pass_number 
    INTEGER, DIMENSION(:), INTENT(IN) :: parents 
    INTEGER, DIMENSION(:), INTENT(IN) :: parent_kind 
    INTEGER(eis_status), INTENT(INOUT) :: status_code 
    INTEGER(eis_bitmask), INTENT(INOUT) :: host_state 
    INTEGER(eis_error), INTENT(INOUT) :: errcode 
    INTEGER :: lq, uq 

    !If no quotes are present then this isn’t a string 
    lq = INDEX(key_value, '"') 
    IF (lq == 0) THEN 
      status_code = eis_status_not_handled 
      RETURN 
    END IF 

    PRINT *,'Found text key ', TRIM(key_text), '. Value is ', & 
        key_value(lq+1:uq-1) 

  END SUBROUTINE key_str_sub



Example

  SUBROUTINE key_val_sub(key_text, values, pass_number, cap_bits, parser, & 
      parents, parent_kind, status_code, host_state, errcode) 
    CHARACTER(LEN=*), INTENT(IN) :: key_text 
    REAL(eis_num), DIMENSION(:), INTENT(IN) :: values 
    INTEGER, INTENT(IN) :: pass_number 
    INTEGER(eis_bitmask), INTENT(IN) :: cap_bits 
    TYPE(eis_parser), INTENT(INOUT) :: parser 
    INTEGER, DIMENSION(:), INTENT(IN) :: parents 
    INTEGER, DIMENSION(:), INTENT(IN) :: parent_kind 
    INTEGER(eis_status), INTENT(INOUT) :: status_code 
    INTEGER(eis_bitmask), INTENT(INOUT) :: host_state 
    INTEGER(eis_error), INTENT(INOUT) :: errcode 

    PRINT *,'Found numerical key ', TRIM(key_text), '. Values are ', values 

  END SUBROUTINE key_val_sub



Example

begin:block1 
  key2 = "my key" 
end:block1 

begin:block2 
  new_key = 7+12 
end:block2 

begin:block1 
  key1 = sin(pi/3) 
end:block1

 Found text key key2. Value is my key 
 Found numerical key new_key. Values are    19.000000000000000      
 Found numerical key key1. Values are   0.86602540378443860 



Parser and stacks
• By default an eis_text_deck_parser object will create a 

maths parser for itself 

• You can optionally specify a pointer to an eis_parser 
object to the init method to specify a custom parser 
that has your variables, functions etc. in it 

• If you use the action functions that give you a stack 
you should copy the stack if you want to keep it 

• In Fortran just do “mystack = stack” 

• In C there is an ‘eis_copy_stack’ function



Other use of deck parser
• As well as `eis_text_deck_parser` there is another 

method for calling the bits of a deck definition. 
`eis_deck_caller` 

• This is a programatic way of starting and ending 
blocks and calling keys 

• Together with the ability to bind a result function 
to a stack this also means that you can use your 
deck definition to provide an external interface to 
your code



Other use of deck parser

  FUNCTION epoch_start_block(block_name) BIND(C) 

    IMPLICIT NONE 

    TYPE(C_PTR), VALUE, INTENT(IN) :: block_name 
    INTEGER(eis_error) :: epoch_start_block 
    INTEGER :: uid 

    CALL eis_c_f_string(block_name, f_blockname) 
    uid = deck_caller%start_block(f_blockname, epoch_start_block, & 
         pass_number = 1) 

    DEALLOCATE(f_blockname) 

  END FUNCTION epoch_start_block



Other use of deck parser

  FUNCTION epoch_call_key(key, value, value_function) BIND(C) 

    TYPE(C_PTR), VALUE, INTENT(IN) :: key, value 
    TYPE(C_FUNPTR), VALUE, INTENT(IN) :: value_function 
    INTEGER(eis_error) :: epoch_call_key 
    PROCEDURE(parser_result_function), POINTER :: value_function_f 
    INTEGER :: uid 
    CHARACTER(LEN=:), ALLOCATABLE :: key_f, value_f 

    CALL eis_c_f_string(key, key_f) 
    CALL eis_c_f_string(value, value_f) 
    IF (C_ASSOCIATED(value_function)) THEN 
      CALL C_F_PROCPOINTER(value_function, value_function_f) 
      uid = deck_caller%call_key(key_f, epoch_call_key, & 
          value_text = value_f, value_function = value_function_f, & 
          pass_number = 1) 
    ELSE 
      uid = deck_caller%call_key(key_f, epoch_call_key, & 
          value_text = value_f, pass_number = 1) 
    END IF



Other use of deck parser

  FUNCTION epoch_end_deck() BIND(C) 

    INTEGER(eis_error) :: epoch_end_deck 

    CALL deck_caller%end_pass(epoch_end_deck, pass_number = 1) 
    IF (epoch_end_deck /= eis_err_none) RETURN 

    ! This line replays the deck that you ran for pass 2 
    CALL deck_caller%replay_deck(epoch_end_deck, pass_number = 2, & 
        replay_control_blocks = .TRUE.) 
    ! Now finalise all blocks and the deck has been parsed 
    CALL deck_caller%finalise_all_blocks(epoch_end_deck, pass_number = 2) 

  END FUNCTION epoch_end_deck



Other use of deck parser
• That isn’t everything that’s needed even for that 

interface (what’s missing is mostly EPOCH internals but 
there is also stuff on reporting lines and filenames for 
errors from external codes) 

• Also in a practical code you will probably want to have 
more features than just being able to run your input 
deck from an external program 

• But it is a very strong start to being able to mix a high 
performance text file input with either allowing linking 
of codes for multi scale simulations or using a scripting 
language to provide interactive operation of your code



Description and 
Literate Input



Descriptions

• Both parser elements (functions, constants, 
functors etc.) and deck blocks and keys can have 
text descriptions associated with them 

• You can retrieve these descriptions element by 
element or you can get EIS-2 to produce you a 
markdown document for either parser or deck 
information



Descriptions



Parser Visualisations
• The maths parser can visualise a stack in various ways 

• You can get the RPN version of the current state of 
the stack (simplified or not as specified) 

• You can convert a stack back into infix maths in 
current state (even without simplification some 
changes to brackets will occur although the 
expression will be mathematically equivalent) 

• A graphviz .dot file view of the stack (see the 
diagrams from earlier)



Deck Visualisations

• You can also visualise deck definitions or actual 
decks as graphviz dot files 

• Bit niche in general because most decks tend to 
be quite flat 

• Can be useful for debugging



Conclusions



Future Work
• Finish the interoperability interface 

• Add vector execution option - execute several values at once 

• Performance improvement only for complex individual 
getter functions 

• Add LLVM compilation option (?) 

• Quite tricky and performance benefits will be limited 
without requiring host code functions be compiled to 
LLVM intermediate language 

• More examples and documentation



Conclusions
• EIS-2 provides a complete, open source library for 

reading input files containing rich mathematical 
notation 

• Currently fully featured for Fortran code but with a 
complete C interface coming soon for other languages 

• Use of a statically linked library with no internal 
communications makes it well suited to large scale 
HPC 

• Can also be used to provide a link from your code to 
other software drivers


