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Compiling multiple files 
• Compiling a simple code may be easy 

•  cc program.c 
•  cc –o program.exe program.c 

• All but simplest programs have more than one source file 
•  cc –o program.exe file1.c file2.c file3.c … 
•  this is wasteful 

• Compile independently 
•  cc –c file1.c 
•  cc –c file2.c 
•  … 
•  cc –o program.exe file1.o file2.o file3.o … 



The problems 
• What if I changed file2.c (and maybe other files …) 

•  cc –c file2.c 
•  cc –o program.exe file1.o file2.o file3.o … 
•  an error-prone procedure! 

•  Let’s be safe 
•  rm *.o 
•  cc –c file1.c 
•  cc –c file2.c 
•  … 
•  cc –o program.exe file1.o file2.o file3.o … 
•  wasteful again! 



More problems … 
• Source files often depend on others, e.g. include files 
• What if I edit include3.h 

•  how do I know which files to recompile? 

• Recompiling all files is slow and unnecessary 
•  Failing to recompile a file is disastrous 

•  if your executable program does not reflect the current source code 
then debugging is impossible! 

• Need a tool which: 
•  remembers dependencies between files (in human readable form) 
•  recompiles all files that need to be updated 
•  recompiles the minimum number of files 



Enter “make” 
• User specifies pairwise dependencies between files 

•  “program2.o depends on program2.c” 
•  “program2.c depends on include3.h” 

• Make works out the entire dependency tree 

• User specifies pairwise rules for resolving dependencies 
•  “to update program2.o run the compiler on program2.c” 

• All this information is stored in a Makefile 
•  tells make how to update files 

• How does make know when to update? 
•  Make compares the date stamps of files 



Example 1: family1 
•  Three types of file: 

•  david.self 
•  david.parent 
•  david.child 

• Dependencies 
•  self is younger than parent 
•  child is younger than self 

• One final output file 
•  davidfamily contains a date-ordered listing of the source files 
•  if correct, order should be: parent; self; child. 

• Update rule is to copy: cp david.self david.child 



Example 2: family2 
•  Imagine another family: sally 

• Wasteful to specify explict rules all over again 
•  file1.o: file1.c 

•  cc –c file1.c 
•  file2.o: file2.c 

•  cc –c file2.c 
•  file3.o: file3.c 

•  cc –c file2.c 
•  … 

• Make also understands implicit rules based on suffix 
•  “this is how you create any child” 
•  applies to david.child and sally.child 



Example 3: C sharpen code 
•  Illustrates use of variables 

•  dependencies on header files 
•  global change of C compiler by updating a single line 
•  creation of one list of variables from another 

• Some magic variables 
•  e.g. “The thing on left hand side of expression you’re working on” 

• Default rule 
•  the first one in the Makefile, coventionally all 

• Dummy rules 
•  housekeeping, e.g. delete junk with clean 
•  to find out object files in variable OBJ, put in a rule to print it out 



Example 4: Fortran sharpen code 
•  The same as the C version 

• Slightly complicated by existence of .c file among .f90’s 

• Possible to create relatively simple generic Makefiles 
•  extend as appropriate for real cases 



The dirty linen 
•  Tabs have magic significance in Makefiles 

L 
• Can’t easily cut and paste them from the web! 



Tricks and tips 
• You can make anything under control of make 

•  eg “make file.o” 

• make –n prints out what make would do without doing it 

• make –d prints out why make is doing what it is 
•  I don’t find –d that useful in practice 

•  update rules can print debug info 
•  echo “updating $< from $@”; cp $< $@ 



Complications 
•  Fortran modules 

•  more sophisticated than C header files but harder to cope with 

• What if I have hundreds of header files 
•  tools like “makedepend” can write the rules for you 

• GNU autotools (e.g. configure) produce Makefiles 
•  unfortunately, not human understandable! 

• Make has a whole host of default rules and variables 
•  I prefer makefiles to be explicit and not assume these 



ARCHER 
• Want Makefile that works for all programming environments 

•  but different compilers have different options 

• Can enquire within Makefile 
•  example here 

• Change of compiler module invisible to make 
•  module switch PrgEnv-cray PrgEnv-intel 
•  make clean 
•  make 



Goodbye! 
 

Virtual tutorial has finished 


